The intrinsic relationships between energy dissipation,energy release,strength and abrupt structural failure are key to understanding the evolution of deformational processes in rocks.Theoretical and experimental stud...The intrinsic relationships between energy dissipation,energy release,strength and abrupt structural failure are key to understanding the evolution of deformational processes in rocks.Theoretical and experimental studies confirm that energy plays an important role in rock deformation and failure.Dissipated energy from external forces produces damage and irreversible deformation within rock and decreases rock strength over time.Structural failure of rocks is caused by an abrupt release of strain energy that manifests as a catastrophic breakdown of the rock under certain conditions.The strain energy released in the rock volume plays a pivotal role in generating this abrupt structural failure in the rocks.In this paper,we propose criteria governing(1) the deterioration of rock strength based on energy dissipation and(2) the abrupt structural failure of rocks based on energy release.The critical stresses at the time of abrupt structural failure under various stress states can be determined by these criteria.As an example,the criteria have been used to analyze the failure conditions of surrounding rock of a circular tunnel.展开更多
The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety ...The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding t展开更多
Since the advent of transcatheter aortic valve replacement(TAVR)in 2002,it has now become the default interventional strategy for symptomatic patients presenting with severe aortic stenosis,particularly in intermediat...Since the advent of transcatheter aortic valve replacement(TAVR)in 2002,it has now become the default interventional strategy for symptomatic patients presenting with severe aortic stenosis,particularly in intermediate to highsurgical risk patients.In 2019,the United States Food and Drug Administration approved TAVR in low-risk patients based on two randomized trials.However,these breakthrough trials excluded patients with certain unfavorable anatomies and odd profiles.While currently there is no randomized study of TAVR in young patients,it may be preferred by the young population given the benefits of early discharge,shorter hospital stay,and expedite recovery.Nonetheless,it is important to ruminate various factors including lifetime expectancy,risk of pacemaker implantation,and the need for future valve or coronary interventions in young cohorts before considering TAVR in these patients.Furthermore,the data on long-term durability(>10 years)of TAVR is still unknown given most of the procedures were initially performed in the high or prohibitive surgical risk population.Thus,this editorial aims to highlight the importance of considering an individualized approach in young patients with consideration of various factors including lifetime expectancy while choosing TAVR against surgical aortic valve replacement.展开更多
With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth...With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth-quakes.This study presents a novel comprehensive probabilistic framework to quantify the environmental impact of buildings,including uncertainties in the material extraction and production,transportation,construction,seis-mic exposure and aging(including deterioration),and end-of-life stages.The developed framework is used to quantify the environmental impact of a 3-story residential building located in Vancouver,Canada.The results show that there is a significant variation in the environmental impact of the prototype building in each stage of the life cycle assessment.If the prototype building is hit by the design level earthquake,it is expected that the median environmental impact of the prototype will be further increased by 42%.In addition,by accounting for the probability of occurrence of different earthquakes within a 50-year design life of the prototype building,the earthquake related damage will result in an additional 5%of the initial carbon emission of the building.This shows the importance of including earthquake hazard and deterioration in whole building life cycle assessments.展开更多
Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new...Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models.展开更多
Existing structures may suffer from resistance deterioration due to repeated attacks. The modeling of resistance deterioration is a critical ingredient in the reliability assessment and service life prediction of thes...Existing structures may suffer from resistance deterioration due to repeated attacks. The modeling of resistance deterioration is a critical ingredient in the reliability assessment and service life prediction of these degraded structures. In this paper, an explicit compound Poisson process-based model is developed to describe the shock deterioration of structural resistance, where the magnitude of each shock deterioration increment is modeled by a Gamma-distributed random variable. The moments(mean value and variance) and the distribution function of the cumulative shock deterioration are derived in a closed form, based on a proposed W-function. A method for the efficient calculation of the W-function is presented,which reduces to the Bessel type I function if the shock deterioration increment is exponentially distributed(a special case of Gamma distribution). The proposed shock deterioration model is applicable to either a stationary or a nonstationary Poisson process of random jumps.Subsequently, the overall resistance deterioration is modeled as the linear combination of gradual and shock deteriorations, based on which the proposed model can be used in the timedependent reliability assessment of aging structures efficiently. A numerical example is presented to demonstrate the applicability of the proposed deterioration model by estimating the time-dependent reliability of an aging bridge. It is found that a smaller threshold for the degraded resistance leads to greater mean value and standard deviation of the time to failure,and this effect is enhanced by a smaller occurrence rate of the shock deterioration.展开更多
基金Supported by the State Key Basic Research Development Program of China (2002CB412705,2010CB226804) the National Natural Science Foundation of China (50579042,10802092)
文摘The intrinsic relationships between energy dissipation,energy release,strength and abrupt structural failure are key to understanding the evolution of deformational processes in rocks.Theoretical and experimental studies confirm that energy plays an important role in rock deformation and failure.Dissipated energy from external forces produces damage and irreversible deformation within rock and decreases rock strength over time.Structural failure of rocks is caused by an abrupt release of strain energy that manifests as a catastrophic breakdown of the rock under certain conditions.The strain energy released in the rock volume plays a pivotal role in generating this abrupt structural failure in the rocks.In this paper,we propose criteria governing(1) the deterioration of rock strength based on energy dissipation and(2) the abrupt structural failure of rocks based on energy release.The critical stresses at the time of abrupt structural failure under various stress states can be determined by these criteria.As an example,the criteria have been used to analyze the failure conditions of surrounding rock of a circular tunnel.
基金We gratefully acknowledge the financial support by the National Key Research and Development Program of China(2022YFC2904100)the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing(SKLCRSM20KFA11).
文摘The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding t
文摘Since the advent of transcatheter aortic valve replacement(TAVR)in 2002,it has now become the default interventional strategy for symptomatic patients presenting with severe aortic stenosis,particularly in intermediate to highsurgical risk patients.In 2019,the United States Food and Drug Administration approved TAVR in low-risk patients based on two randomized trials.However,these breakthrough trials excluded patients with certain unfavorable anatomies and odd profiles.While currently there is no randomized study of TAVR in young patients,it may be preferred by the young population given the benefits of early discharge,shorter hospital stay,and expedite recovery.Nonetheless,it is important to ruminate various factors including lifetime expectancy,risk of pacemaker implantation,and the need for future valve or coronary interventions in young cohorts before considering TAVR in these patients.Furthermore,the data on long-term durability(>10 years)of TAVR is still unknown given most of the procedures were initially performed in the high or prohibitive surgical risk population.Thus,this editorial aims to highlight the importance of considering an individualized approach in young patients with consideration of various factors including lifetime expectancy while choosing TAVR against surgical aortic valve replacement.
文摘With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth-quakes.This study presents a novel comprehensive probabilistic framework to quantify the environmental impact of buildings,including uncertainties in the material extraction and production,transportation,construction,seis-mic exposure and aging(including deterioration),and end-of-life stages.The developed framework is used to quantify the environmental impact of a 3-story residential building located in Vancouver,Canada.The results show that there is a significant variation in the environmental impact of the prototype building in each stage of the life cycle assessment.If the prototype building is hit by the design level earthquake,it is expected that the median environmental impact of the prototype will be further increased by 42%.In addition,by accounting for the probability of occurrence of different earthquakes within a 50-year design life of the prototype building,the earthquake related damage will result in an additional 5%of the initial carbon emission of the building.This shows the importance of including earthquake hazard and deterioration in whole building life cycle assessments.
基金National Key R&D Program of China under Grant No.2019YFC1511005the National Natural Science Foundation of China under Grant Nos.51921006,52192661 and 52008138+2 种基金the China Postdoctoral Science Foundation under Grant Nos.BX20190102 and 2019M661286the Heilongjiang Natural Science Foundation under Grant No.LH2022E070the Heilongjiang Province Postdoctoral Science Foundation under Grant Nos.LBH-TZ2016 and LBH-Z19064。
文摘Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models.
基金supported by the Vice-Chancellor’s Postdoctoral Research Fellowship from the University of Wollongong。
文摘Existing structures may suffer from resistance deterioration due to repeated attacks. The modeling of resistance deterioration is a critical ingredient in the reliability assessment and service life prediction of these degraded structures. In this paper, an explicit compound Poisson process-based model is developed to describe the shock deterioration of structural resistance, where the magnitude of each shock deterioration increment is modeled by a Gamma-distributed random variable. The moments(mean value and variance) and the distribution function of the cumulative shock deterioration are derived in a closed form, based on a proposed W-function. A method for the efficient calculation of the W-function is presented,which reduces to the Bessel type I function if the shock deterioration increment is exponentially distributed(a special case of Gamma distribution). The proposed shock deterioration model is applicable to either a stationary or a nonstationary Poisson process of random jumps.Subsequently, the overall resistance deterioration is modeled as the linear combination of gradual and shock deteriorations, based on which the proposed model can be used in the timedependent reliability assessment of aging structures efficiently. A numerical example is presented to demonstrate the applicability of the proposed deterioration model by estimating the time-dependent reliability of an aging bridge. It is found that a smaller threshold for the degraded resistance leads to greater mean value and standard deviation of the time to failure,and this effect is enhanced by a smaller occurrence rate of the shock deterioration.