We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the lo...We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.展开更多
This paper deals with a nonlinear initial boundary values problem derived from a modified version of the so called Lebowitz and Rubinow’s model [16] discussed in [8, 9]modeling a proliferating age structured cell pop...This paper deals with a nonlinear initial boundary values problem derived from a modified version of the so called Lebowitz and Rubinow’s model [16] discussed in [8, 9]modeling a proliferating age structured cell population with inherited properties. We give existence and uniqueness results on appropriate weighted L~p-spaces with 1 ≤ p < ∞ in the case where the rate of cells mortality σ and the transition rate k are depending on the total density of population. General local and nonlocal reproduction rules are considered.展开更多
In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solution...In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem.展开更多
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi...We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.展开更多
In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the i...In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.展开更多
In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the...In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.展开更多
In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density...In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.展开更多
In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and u...In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and under the suitable condition of the large solutions, it shows that if the initial data are small perturbation on those of the known strong solutions, the large solutions are stable.展开更多
基金supported by the China Postdoctoral Science Foundation (20090450333)supported by the National Basic Research Program (2005CB321700)NSFC (40890154)
文摘We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
文摘This paper deals with a nonlinear initial boundary values problem derived from a modified version of the so called Lebowitz and Rubinow’s model [16] discussed in [8, 9]modeling a proliferating age structured cell population with inherited properties. We give existence and uniqueness results on appropriate weighted L~p-spaces with 1 ≤ p < ∞ in the case where the rate of cells mortality σ and the transition rate k are depending on the total density of population. General local and nonlocal reproduction rules are considered.
基金Supported by National Natural Science Foundation of China-NSAF (10976026)
文摘In this article, we are concerned with the strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids in a domain Ω R^3. We prove the local existence of unique strong solutions provided that the initial data u0 and u0 satisfy a nature compatibility condition. The important point in this article is that we allow the initial vacuum: the initial density may vanish in an open subset of Ω. This is achieved by getting some uniform estimates and using a Schauder fixed point theorem.
基金supported in part by the National Science Foundation under Grants DMS-0807551, DMS-0720925, and DMS-0505473the Natural Science Foundationof China (10728101)supported in part by EPSRC grant EP/F029578/1
文摘We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.
基金Supported by NSF (10531020) of Chinathe Programof 985 Innovation Engineering on Information in Xiamen University (2004-2007) and NCETXMU
文摘In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.
基金supported by 973 Program(2011CB711100)supported by NSFC (11171229)
文摘In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.
文摘In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.
基金supported by National Natural Science Foundation of China (Grant No.11171229)supported by National Natural Science Foundation of China (Grant Nos.11171229,11231006 and 11228102)+1 种基金Funds of Beijing Education Committeesupported by Funding Project for Academic Human Resources Development in Institution of Higher Learning under the Jurisdiction of Beijing Municipality (Grant No.201108091)
文摘In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and under the suitable condition of the large solutions, it shows that if the initial data are small perturbation on those of the known strong solutions, the large solutions are stable.