Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of corre- lating regional synchronization contrasts (CRSC) c...Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of corre- lating regional synchronization contrasts (CRSC) can determine the reliability of multi-site data trends or shortimpending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North-South seismic belt that lasted for 8-12 months. By applying the CRSC method to analyze the spontaneous field Esp at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the Esp strength of credible anomalous trends was present at minimum 30% of the stations. In the southern section of the Tan-Lu fault zone, the Esp at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters (Ms 7.2) in November 2015 and Japan's Kyushu island (Ms 7.3) in April 2016.展开更多
Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative ...Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative phase channel(θ_(-)≡θ_(1)-θ_(2))exhibits an Ising-type Z_(2) symmetry due to the second order Josephson coupling,where θ_(1,2) are the phases of two gap functions.In contrast,the U(1) symmetry in the channel of θ_(+)≡(θ_(1)+θ_(2))/2 is intact.The phase locking,i.e.,ordering of θ_(-),can take place in the phase fluctuation regime before the onset of superconductivity,i.e.,when θ_(+) is disordered.If θ_(-) is pinned at ±π/2,then timereversal symmetry is broken in the normal state,otherwise,if θ_(-)=0,or,π,rotational symmetry is broken,leading to a nematic normal state.In both cases,the order parameters possess a 4-fermion structure beyond the scope of mean-field theory,which can be viewed as a high order symmetry breaking.We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem.As a natural by-product,we also find the other interesting intermediate phase corresponds to ordering of θ_+ but with θ_(-)disordered.This is the quartetting,or,charge-4e,superconductivity,which occurs above the low temperature Z_(2)-breaking charge-2e superconducting phase.Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.展开更多
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor...Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.展开更多
Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model i...Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.展开更多
基金supported by two special tasks from the Monitoring and Forecasting Department of China Earthquake Administration(16A28ZX116,16A28ZX117)
文摘Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of corre- lating regional synchronization contrasts (CRSC) can determine the reliability of multi-site data trends or shortimpending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North-South seismic belt that lasted for 8-12 months. By applying the CRSC method to analyze the spontaneous field Esp at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the Esp strength of credible anomalous trends was present at minimum 30% of the stations. In the southern section of the Tan-Lu fault zone, the Esp at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters (Ms 7.2) in November 2015 and Japan's Kyushu island (Ms 7.3) in April 2016.
基金supported by a startup funding of UCSD and the National Science Foundation (Grant No. DMR-2238360)supported by the National Natural Science Foundation of China (Grant Nos. 12234016, and 12174317)supported by the New Cornerstone Science Foundation。
文摘Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative phase channel(θ_(-)≡θ_(1)-θ_(2))exhibits an Ising-type Z_(2) symmetry due to the second order Josephson coupling,where θ_(1,2) are the phases of two gap functions.In contrast,the U(1) symmetry in the channel of θ_(+)≡(θ_(1)+θ_(2))/2 is intact.The phase locking,i.e.,ordering of θ_(-),can take place in the phase fluctuation regime before the onset of superconductivity,i.e.,when θ_(+) is disordered.If θ_(-) is pinned at ±π/2,then timereversal symmetry is broken in the normal state,otherwise,if θ_(-)=0,or,π,rotational symmetry is broken,leading to a nematic normal state.In both cases,the order parameters possess a 4-fermion structure beyond the scope of mean-field theory,which can be viewed as a high order symmetry breaking.We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem.As a natural by-product,we also find the other interesting intermediate phase corresponds to ordering of θ_+ but with θ_(-)disordered.This is the quartetting,or,charge-4e,superconductivity,which occurs above the low temperature Z_(2)-breaking charge-2e superconducting phase.Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.
文摘Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774152)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y1100088)the Founding of Zhejiang Ocean University
文摘Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.