The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not h...The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.展开更多
The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead t...The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradation of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress cannot cause cladding failure as long as the fuel temperatures are below the design limit of 600°C (1112°F).展开更多
This paper presents a unified calculation method and its application in determining the uniaxial mechanical properties of concrete with concrete strengths ranging from 10 to 140MPa.By analyzing a large collection of t...This paper presents a unified calculation method and its application in determining the uniaxial mechanical properties of concrete with concrete strengths ranging from 10 to 140MPa.By analyzing a large collection of test results of the uniaxial mechanicalproperties of normal-strength,high-strength and super high-strength concrete in China and performing a regression analysis,unified calculation formulas for the mechanical indexes of concrete are proposed that can be applied to various grades of concrete for determining the size coefficient,uniaxial compressive strength,uniaxial tensile strength,elastic modulus,and strain at peak uniaxial compression and tension.Optimized mathematical equations for the nonlinear stress-strain relationship of concrete,including the ascending and descending branches.under uniaxial stress,are also established.The elastic modulus is almost constant throughout the elastic stage for the ascending branches of the stress-strain relationship for concrete.The proposed stress-strain relationship of concrete was applied to the nonlinear finite element analysis of both a steel-concrete composite beam and a concrete-filled steel tubular stub column.The analytical results are in good agreement with the experiment results,indicating that the proposed stress-strain relationship of concrete is applicable.The achievements presented in this paper can be used as references for the design and nonlinear finite element analysis of concrete structures.展开更多
文摘The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.
文摘The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradation of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress cannot cause cladding failure as long as the fuel temperatures are below the design limit of 600°C (1112°F).
基金This research work was financially supported by the National Natural Science Foundation of China(Grant No.50808180)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.200805331064).
文摘This paper presents a unified calculation method and its application in determining the uniaxial mechanical properties of concrete with concrete strengths ranging from 10 to 140MPa.By analyzing a large collection of test results of the uniaxial mechanicalproperties of normal-strength,high-strength and super high-strength concrete in China and performing a regression analysis,unified calculation formulas for the mechanical indexes of concrete are proposed that can be applied to various grades of concrete for determining the size coefficient,uniaxial compressive strength,uniaxial tensile strength,elastic modulus,and strain at peak uniaxial compression and tension.Optimized mathematical equations for the nonlinear stress-strain relationship of concrete,including the ascending and descending branches.under uniaxial stress,are also established.The elastic modulus is almost constant throughout the elastic stage for the ascending branches of the stress-strain relationship for concrete.The proposed stress-strain relationship of concrete was applied to the nonlinear finite element analysis of both a steel-concrete composite beam and a concrete-filled steel tubular stub column.The analytical results are in good agreement with the experiment results,indicating that the proposed stress-strain relationship of concrete is applicable.The achievements presented in this paper can be used as references for the design and nonlinear finite element analysis of concrete structures.