Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support ...Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.展开更多
Because the equivalence principle forbids local mass density, we cannot formulate general relativistic mass as an integral over mass density as in Newtonian gravity. This century-old problem was addressed forty years ...Because the equivalence principle forbids local mass density, we cannot formulate general relativistic mass as an integral over mass density as in Newtonian gravity. This century-old problem was addressed forty years ago by Penrose, and many papers have since extended the concept. Currently there is no satisfactory physical understanding of the nature of quasi-local mass. In this paper I review the key issues, the current status, and propose an alternative interpretation of the problem of local mass and energy density for gravity systems from an information perspective.展开更多
Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expa...Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expansion takes prominence over gravity. This assertion is referred to as the inverse gravity inflationary assertion. Thus, a correction to Newtonian gravitational force is introduced where a parameterized inverse gravity force term is incorporated into the classical Newtonian gravitational force equation where the inverse force term is negligible for distances less than the distance to which cosmological expansion takes prominence over gravity. Conversely, at distances greater than the distance to which cosmological expansion takes prominence over gravity. The inverse gravity term is shown to be dominant generating universal inflation. Gravitational potential energy is thence defined by the integral of the difference (or subtraction) between the conventional Newtonian gravitational force term and the inverse gravity term with respect to radius (r) which allows the formulation, incorporation, and mathematical description to and of gravitational redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynamic pressure of the expansion of a cosmological fluid in a homogeneous isotropic universe is mathematically described in terms of the inverse gravity inflationary assertion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equations for the description of an isotropic and homogeneous universe are derived incorporating the mathematics of the inverse gravity inflationary assertion to fully show that the theoretical concept is potentially interwoven into the cosmological structure of the universe.展开更多
This document is based on a question asked in the Dark Side of the Universe 2010 conference in Leon, Mexico, when a researcher from India asked the author about how to obtain a stability analysis of massive gravitons....This document is based on a question asked in the Dark Side of the Universe 2010 conference in Leon, Mexico, when a researcher from India asked the author about how to obtain a stability analysis of massive gravitons. The answer to this question involves an extension of the usual Pauli_Fiertz Langrangian as written by Ortin, with non- zero graviton mass contributing to a relationship between the trace of a revised GR stress-energy tensor (assuming non- zero graviton mass), and the trace of a revised symmetric tensor times a tiny mass for a 4 dimensional graviton. The resulting analysis makes use of Visser’s treatment of a stress en-ergy tensor, with experimental applications discussed in the resulting analysis. If the square of frequency of a massive graviton is real valued and greater than zero, stability can be possibly confirmed experimentally.展开更多
Utilizing stress-energy tensors which allow for a divergence-free formulation, we establish Pohozaev's identity for certain classes of quasilinear systems with variational structure.
In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that ...In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.展开更多
文摘Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.
文摘Because the equivalence principle forbids local mass density, we cannot formulate general relativistic mass as an integral over mass density as in Newtonian gravity. This century-old problem was addressed forty years ago by Penrose, and many papers have since extended the concept. Currently there is no satisfactory physical understanding of the nature of quasi-local mass. In this paper I review the key issues, the current status, and propose an alternative interpretation of the problem of local mass and energy density for gravity systems from an information perspective.
文摘Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expansion takes prominence over gravity. This assertion is referred to as the inverse gravity inflationary assertion. Thus, a correction to Newtonian gravitational force is introduced where a parameterized inverse gravity force term is incorporated into the classical Newtonian gravitational force equation where the inverse force term is negligible for distances less than the distance to which cosmological expansion takes prominence over gravity. Conversely, at distances greater than the distance to which cosmological expansion takes prominence over gravity. The inverse gravity term is shown to be dominant generating universal inflation. Gravitational potential energy is thence defined by the integral of the difference (or subtraction) between the conventional Newtonian gravitational force term and the inverse gravity term with respect to radius (r) which allows the formulation, incorporation, and mathematical description to and of gravitational redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynamic pressure of the expansion of a cosmological fluid in a homogeneous isotropic universe is mathematically described in terms of the inverse gravity inflationary assertion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equations for the description of an isotropic and homogeneous universe are derived incorporating the mathematics of the inverse gravity inflationary assertion to fully show that the theoretical concept is potentially interwoven into the cosmological structure of the universe.
文摘This document is based on a question asked in the Dark Side of the Universe 2010 conference in Leon, Mexico, when a researcher from India asked the author about how to obtain a stability analysis of massive gravitons. The answer to this question involves an extension of the usual Pauli_Fiertz Langrangian as written by Ortin, with non- zero graviton mass contributing to a relationship between the trace of a revised GR stress-energy tensor (assuming non- zero graviton mass), and the trace of a revised symmetric tensor times a tiny mass for a 4 dimensional graviton. The resulting analysis makes use of Visser’s treatment of a stress en-ergy tensor, with experimental applications discussed in the resulting analysis. If the square of frequency of a massive graviton is real valued and greater than zero, stability can be possibly confirmed experimentally.
文摘Utilizing stress-energy tensors which allow for a divergence-free formulation, we establish Pohozaev's identity for certain classes of quasilinear systems with variational structure.
文摘In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.