The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500...The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500℃ and at strain rates from 0.001 s^-1 to 1.0 s^-1. The compression flow curves exhibited an initial sharp increase with strain, followed by monotonous hardening. The maximum stress decreased with decreasing strain rate and increasing temperature. The hot deformation characteristics of the material were studied using processing maps. The domain of safety and unsafe regime were identified and validated through microstructural examination.展开更多
Flow behavior and processing map play important roles in the hot deformation process of titanium alloys. In this research, compression Gleeble tests have been carried out to investigate the stress-strain relationship ...Flow behavior and processing map play important roles in the hot deformation process of titanium alloys. In this research, compression Gleeble tests have been carried out to investigate the stress-strain relationship at temperatures ranging from 700 to 1000 ℃ and strain rates ranging from 0.001 to 1 s-1 for ATI 425 titanium alloy. Arrhenius type constitutive equation was obtained to describe the compressive flow behavior with modification of additional deformation dead zone, friction model, temperature model and strain rate. The introduction of novel calculation method for α value in Arrhenius equation gives more accurate fitting than traditional one. Processing maps were drawn based on the distribution of dissipator co-content, and optimized deformation temperature and strain rate range obtained. It is proven to be accurate and effective through the experimental results. The microstructure analysis shows that more dynamic recrystallization can be achieved in the area with larger ηvalue on the processing map.展开更多
The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results ...The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results show that the flow stress increases as the deformation temperature decreases or as the strain rate increases.A strain-dependent constitutive equation and a feed-forward back-propagation artificial neural network were used to predict flow stress,which showed good agreement with experimental data.The processing map suggests that the domains of 643-673 K and 0.001-0.01 s-1 are corresponded to optimum conditions for hot working of the T4-treated Mg-6Zn-1.5Cu-0.5Zr alloy.展开更多
In the Yutianbao Mine, the Nantong Coal Field, Chongqing, a lot of gas samples were measured and analyzed. It has been found in these samples that helium is sensitive to stress concentration, while argon is sensitive ...In the Yutianbao Mine, the Nantong Coal Field, Chongqing, a lot of gas samples were measured and analyzed. It has been found in these samples that helium is sensitive to stress concentration, while argon is sensitive to stress release. Compared with the flowing out of gas it-self, the combination of helium and argon can be more suitably used as an indicator to predict gas outburst. In a mining area of this mine, both δ He > 30 and δ Ar < ?0.97 can be used critically to define the dangerous area. Also, the contour maps of δ He, δ Ar and CH4 can provide a guidance for engineering monitoring.展开更多
文摘The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500℃ and at strain rates from 0.001 s^-1 to 1.0 s^-1. The compression flow curves exhibited an initial sharp increase with strain, followed by monotonous hardening. The maximum stress decreased with decreasing strain rate and increasing temperature. The hot deformation characteristics of the material were studied using processing maps. The domain of safety and unsafe regime were identified and validated through microstructural examination.
文摘Flow behavior and processing map play important roles in the hot deformation process of titanium alloys. In this research, compression Gleeble tests have been carried out to investigate the stress-strain relationship at temperatures ranging from 700 to 1000 ℃ and strain rates ranging from 0.001 to 1 s-1 for ATI 425 titanium alloy. Arrhenius type constitutive equation was obtained to describe the compressive flow behavior with modification of additional deformation dead zone, friction model, temperature model and strain rate. The introduction of novel calculation method for α value in Arrhenius equation gives more accurate fitting than traditional one. Processing maps were drawn based on the distribution of dissipator co-content, and optimized deformation temperature and strain rate range obtained. It is proven to be accurate and effective through the experimental results. The microstructure analysis shows that more dynamic recrystallization can be achieved in the area with larger ηvalue on the processing map.
文摘2195铝锂合金被认为是航空航天领域的理想结构材料,但对其热变形行为的研究却相对较少。本工作通过平面应变热压缩试验,研究了2195铝锂合金的热变形行为,变形温度为400~500℃,应变速率为0.01~10 s^(-1)。研究表明,材料变形呈稳态流变特征,随变形温度增高和应变速率降低,流变应力逐渐减小,合金具有正应变速率敏感性。建立了2195铝锂合金材料本构方程,其激活能值为214.937 k J/mol。通过分析加工图,得到材料的适宜加工区为应变速率接近0.01 s^(-1),温度为475~500℃。最后通过分析动态软化过程中的应力规律,得到了材料软化机制判定方程。
基金supported by the R&D Program of Korea Institute of Materials Sciencethe World Premier Materials Program funded by The Ministry of Knowledge Economy,Koreasupport from China Scholarship Council(CSC)
文摘The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results show that the flow stress increases as the deformation temperature decreases or as the strain rate increases.A strain-dependent constitutive equation and a feed-forward back-propagation artificial neural network were used to predict flow stress,which showed good agreement with experimental data.The processing map suggests that the domains of 643-673 K and 0.001-0.01 s-1 are corresponded to optimum conditions for hot working of the T4-treated Mg-6Zn-1.5Cu-0.5Zr alloy.
基金Most of this study was finished during the Fifth Five-Year-Plan period and financially supported by the National Natural Science Foundation of China (Grant No. 49672163). References
文摘In the Yutianbao Mine, the Nantong Coal Field, Chongqing, a lot of gas samples were measured and analyzed. It has been found in these samples that helium is sensitive to stress concentration, while argon is sensitive to stress release. Compared with the flowing out of gas it-self, the combination of helium and argon can be more suitably used as an indicator to predict gas outburst. In a mining area of this mine, both δ He > 30 and δ Ar < ?0.97 can be used critically to define the dangerous area. Also, the contour maps of δ He, δ Ar and CH4 can provide a guidance for engineering monitoring.