Mycelial waste of Streptomyces aureofaciences procured from the aureomycin fermentation industry is used as biosorbent for Au3+. The properties of Au3+ adsorption by the mycelial waste are studied. The results indicat...Mycelial waste of Streptomyces aureofaciences procured from the aureomycin fermentation industry is used as biosorbent for Au3+. The properties of Au3+ adsorption by the mycelial waste are studied. The results indicate that the optimum pH value of Au3+ adsorption is 3.5. The biosorption is a rapid and non-temperature-dependent process. The bio-sorptive capacity with 45.6 mg/g and efficiency with 91.2% are achieved under the conditions of pH 3.5 and 30℃ for 45 min, in which the ratio is 50 mg/g dry weight for the concentrations of initial Au3+ and the mycelial waste. The Au3+ ions adsorbed on the mycelial waste can be eluted. The observation in a transmission electron microscope shows that the Au3+ ions can be reduced to Au particles by the mycelial waste and the Au can become gold crystals with differentforms and sizes. X-ray photoelectron spectroscopy analysis further proves that the Au3+ can be reduced to Au0 by the mycelial waste.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 29876026 and 29743001).
文摘Mycelial waste of Streptomyces aureofaciences procured from the aureomycin fermentation industry is used as biosorbent for Au3+. The properties of Au3+ adsorption by the mycelial waste are studied. The results indicate that the optimum pH value of Au3+ adsorption is 3.5. The biosorption is a rapid and non-temperature-dependent process. The bio-sorptive capacity with 45.6 mg/g and efficiency with 91.2% are achieved under the conditions of pH 3.5 and 30℃ for 45 min, in which the ratio is 50 mg/g dry weight for the concentrations of initial Au3+ and the mycelial waste. The Au3+ ions adsorbed on the mycelial waste can be eluted. The observation in a transmission electron microscope shows that the Au3+ ions can be reduced to Au particles by the mycelial waste and the Au can become gold crystals with differentforms and sizes. X-ray photoelectron spectroscopy analysis further proves that the Au3+ can be reduced to Au0 by the mycelial waste.