Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river ...Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river system to maintain its physical balance. Our study area is the upper and middle flow part of Vouraikos river and surrounding area, near the NW border of Chelmos mountain in Northern Peloponnese, near the town of Kalavrita, at an altitude of 800 m. The area is part of the Skepasto basin, constituting of a graben with a general E-W direction that was developed NW of Kalavrita. The area comprises of Mesozoic, Upper Triassic-Jurassic limestone and dolomite of the Tripolitsa unit External Hellenides and Plio-Pleistocene fluvio-lacustrine sequences, while its tectonic structure is characterized mainly by normal faults. The geomorphological landscape is characterized by alluvial deposits and important geomorphological features including fluvial terraces, alluvial fans, fluvial scarps and their main rill washes. This area has been a place of major human activity as shown by the findings of many uncovered artifacts and a settlement. Through a paleographic reconstruction, detailed field investigations, in combination with the compilation of geomorphological maps using GIS software and archaeological evidence found in the area, we attempted to reconstruct the fluvial evolution of Vouraikos river and identify the major geomorphological factors that led to, and influenced it. Finally, the link between cultural activities and sedimentary processes is also studied. The recorded environmental variations had a great impact on the geomorphological shaping and instability of Kalavrita plain and Vouraikos river and are being reflected on the buried settlement. Sediment fluxes were high enough to form strath terraces, while local tectonics aided in the strath and fill terrace creation. Smaller and younger strath terraces, formed during increased sediment supply periods, when the valley was at a higher level.展开更多
The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin f...The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.展开更多
文摘Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river system to maintain its physical balance. Our study area is the upper and middle flow part of Vouraikos river and surrounding area, near the NW border of Chelmos mountain in Northern Peloponnese, near the town of Kalavrita, at an altitude of 800 m. The area is part of the Skepasto basin, constituting of a graben with a general E-W direction that was developed NW of Kalavrita. The area comprises of Mesozoic, Upper Triassic-Jurassic limestone and dolomite of the Tripolitsa unit External Hellenides and Plio-Pleistocene fluvio-lacustrine sequences, while its tectonic structure is characterized mainly by normal faults. The geomorphological landscape is characterized by alluvial deposits and important geomorphological features including fluvial terraces, alluvial fans, fluvial scarps and their main rill washes. This area has been a place of major human activity as shown by the findings of many uncovered artifacts and a settlement. Through a paleographic reconstruction, detailed field investigations, in combination with the compilation of geomorphological maps using GIS software and archaeological evidence found in the area, we attempted to reconstruct the fluvial evolution of Vouraikos river and identify the major geomorphological factors that led to, and influenced it. Finally, the link between cultural activities and sedimentary processes is also studied. The recorded environmental variations had a great impact on the geomorphological shaping and instability of Kalavrita plain and Vouraikos river and are being reflected on the buried settlement. Sediment fluxes were high enough to form strath terraces, while local tectonics aided in the strath and fill terrace creation. Smaller and younger strath terraces, formed during increased sediment supply periods, when the valley was at a higher level.
文摘The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.