An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration ...An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.展开更多
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East C...A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre展开更多
The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1...The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.展开更多
A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional an...A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional and multi-structural elements. Using six years’ SST data from September 2002 to August 2008, we distinguished the large SST front like Kuroshio Front as well as the smaller ones: namely Taiwan Bank Front, Zhe-Min Coastal Front and Zhang-Yun Ridge Front. The seasonal and monthly variations of these fronts were also studied. Generally, the SST fronts are stronger in winter but weaker in summer. And the fronts are at their active stage during the period from January to May but at their declining stage during the period from July to October.展开更多
Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Fa...Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Families 3 Orders were identified and were first recorded in the northern Taiwan Strait. The dominant species were Vasostoma sp., Sabatieria sp. 1, Linhystera sp. 1, Spilophorella sp., Daptonema sp., Halalaimus sp. and Dorylaimopsis variabilis. Their main densities were all over 4 950 ind./m2. According to mean density at transects, marine nematode density decreased from coastal Weitou to off Minjiang Estuary, which was similar to polychaete distribution in northern Taiwan Strait. The selective deposit feeder (1A) was the dominant food type of marine nematodes in the northern Taiwan Strait, but non-selective deposit feeders (1B) and epigrowth feeders (2A) occupied high proportion, indicating diverse feeding types of marine nematodes in the northern Taiwan Strait. Some environmental factors such as currents are discussed.展开更多
Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata S...Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.展开更多
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in ...In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.展开更多
Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified...Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified on its way northward,and eventually made landfall on Fujian province.In its evolution,there was a northwest-moving cold vortex in upper troposphere to the south of the Subtropical High over the western North Pacific(hereafter referred to as the Subtropical High).In this paper,the possible impacts of this cold vortex on Meranti in terms of its track and intensity variation is investigated using typhoon best track data from China Meteorological Administration,analyses data of 0.5×0.5 degree provided by the global forecasting system of National Centers for Environmental Prediction,GMS satellite imagery and Taiwan radar data.Results show as follows:(1)The upper-level cold vortex was revolving around the typhoon anticlockwise from its east to its north.In the early stage,due to the blocking of the cold vortex,the role of the Subtropical High to steer Meranti was weakened,which results in the looping of the west-moving typhoon.However,when Meranti was coupled with the cold vortex in meridional direction,the northerly wind changed to the southerly at the upper level of the typhoon;at the same time the Subtropical High protruded westward and its southbound steering flow gained strength,and eventually created an environment in which the southerly winds in both upper and lower troposphere suddenly steered Meranti to the north;(2)The change of airflow direction above the typhoon led to a weak vertical wind shear,which in return facilitated the development of Meranti.Meanwhile,to the east of typhoon Meranti,the overlapped southwesterly jets in upper and lower atmosphere accelerated its tangential wind and contributed to its cyclonic development;(3)The cold vortex not only supplied positive vorticity to the typhoon,but also transported cold advection to its outer bands.In conjunction with the warm and moist air展开更多
Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that...Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.展开更多
The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared ...The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.展开更多
Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizho...Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizhou Island in Guangxi is similar to that in the eastern and central portions of the Qiongzhou Strait. Additionally, the Beihai Station in Guangxi exhibits a small salinity variation, whereas the Longmen and Bailongwei Stations, both of which are located far from the Qiongzhou Strait, mainly exhibit continental hydrological characteristics in summer. Moreover, a comparison of the multi-year ocean current data from the Qiongzhou Strait and ocean current observations from the Weizhou Island Station and recently installed current-measuring stations shows that the residual current in the Qiongzhou Strait flows westward in winter and summer. The numerical simulation results also indicate that water from the eastern Qiongzhou Strait enters the Beibu Gulf. The characteristics of the temperature and salinity distributions and analyses of the residual currents further confirm that the western Guangdong coastal current is the main source of the westward transport of water in the Qiongzhou Strait. The primary driver of the formation of the western Guangdong coastal current is the westward flow of freshwater from the Zhujiang (Pearl) River. This water enters the Beibu Gulf via the Qiongzhou Strait and enhances the formation of the cyclonic circulation in the northern Beibu Gulf. In summer, the strong influence of the southwesterly wind leads to the formation of a strong northward coastal current along the western coast of the Beibu Gulf. This process promotes the transport of low-salinity diluted water toward the open ocean and the formation of larger- scale cyclonic circulation around Weizhou Island in the eastern Beibu Gulf. The results of this study regarding the effects of the water inflow from the eastern Qiongzhou Strait to the Beibu Gulf on the Guangxi coastal circulation directly challenge conventional conc展开更多
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of th...The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.展开更多
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution globa...The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.展开更多
Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and t...Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.展开更多
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) ...Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.展开更多
The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tida...The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.展开更多
基金This research was funded by Frontier Research System for Global Change through its sponsorship of the International Pacific Research Center (IPRC) and by the U. S. National Science Foundation under contract Grant No. OCEOO - 95906.
文摘An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.
基金This study was supported by the Major State Basic Research Program under contract Grant No. 19990 43806'
文摘A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre
基金the National Science Foundation of China through Grants Nos.40520140074,40136010(for G.Fang),40476016(for Z.Wei)partly supported by The National Science Foundation(U.S.A)through Grant OCE-02-19782 and ONR Grants Nos.014041.0698,014051—0272(for R.D.Susanto)partly supported b oNR through Grants 040611-8331,050303-7499(for Q.Zheng).
文摘The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB411803 and 2009CB421208)National Natural Science Foundation of China (Grant Nos. 40576015, 40821063 and 40810069004)
文摘A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional and multi-structural elements. Using six years’ SST data from September 2002 to August 2008, we distinguished the large SST front like Kuroshio Front as well as the smaller ones: namely Taiwan Bank Front, Zhe-Min Coastal Front and Zhang-Yun Ridge Front. The seasonal and monthly variations of these fronts were also studied. Generally, the SST fronts are stronger in winter but weaker in summer. And the fronts are at their active stage during the period from January to May but at their declining stage during the period from July to October.
基金the Key Item of National Natural Science Foundation of China under contract No.49636220.
文摘Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Families 3 Orders were identified and were first recorded in the northern Taiwan Strait. The dominant species were Vasostoma sp., Sabatieria sp. 1, Linhystera sp. 1, Spilophorella sp., Daptonema sp., Halalaimus sp. and Dorylaimopsis variabilis. Their main densities were all over 4 950 ind./m2. According to mean density at transects, marine nematode density decreased from coastal Weitou to off Minjiang Estuary, which was similar to polychaete distribution in northern Taiwan Strait. The selective deposit feeder (1A) was the dominant food type of marine nematodes in the northern Taiwan Strait, but non-selective deposit feeders (1B) and epigrowth feeders (2A) occupied high proportion, indicating diverse feeding types of marine nematodes in the northern Taiwan Strait. Some environmental factors such as currents are discussed.
基金The National Key Research and Development Program of China under contract No.2016YFC1402604the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ01+4 种基金the SOA Program on Global Change and Air-Sea Interactions under contract Nos GASI-IPOVAI-03,GASI-IPOVAI-02 and GASI-IPOVAI-01-02the National Natural Science Foundation of China under contract Nos 40476025,41506036 and 41876027the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the Office of Naval Research of United States under contract No.N00014-08-01-0618the China-Indonesia Maritime Cooperation Fund
文摘Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.
基金The National Science Foundation of the United States under contract No.OCE-07-25935the Office of Naval Research of the United States under contract No.N00014-08-1-0618 (for US LDEO)+4 种基金the National Basic Research Program under contract No.2011CB403502the International Cooperation Program of China under contract No.2010DFB23580the International Cooperation Program of State Oceanic Administration of China under contract No.QY0213022the First Institute of Oceanography,the State Oceanic Administration of China under contract No.2010G06 (for Chinese researchers)the Lamont-Doherty Earth Obseruatory contribution No.7626
文摘In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.
基金Natural Fundamental Research and Development Project"973"Program(2009CB421504)Natural Science Foundation of China(40975032+2 种基金4073094841075037)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Typhoon Meranti originated over the western North Pacific off the south tip of the Taiwan Island in 2010.It moved westward entering the South China Sea,then abruptly turned north into the Taiwan Strait,got intensified on its way northward,and eventually made landfall on Fujian province.In its evolution,there was a northwest-moving cold vortex in upper troposphere to the south of the Subtropical High over the western North Pacific(hereafter referred to as the Subtropical High).In this paper,the possible impacts of this cold vortex on Meranti in terms of its track and intensity variation is investigated using typhoon best track data from China Meteorological Administration,analyses data of 0.5×0.5 degree provided by the global forecasting system of National Centers for Environmental Prediction,GMS satellite imagery and Taiwan radar data.Results show as follows:(1)The upper-level cold vortex was revolving around the typhoon anticlockwise from its east to its north.In the early stage,due to the blocking of the cold vortex,the role of the Subtropical High to steer Meranti was weakened,which results in the looping of the west-moving typhoon.However,when Meranti was coupled with the cold vortex in meridional direction,the northerly wind changed to the southerly at the upper level of the typhoon;at the same time the Subtropical High protruded westward and its southbound steering flow gained strength,and eventually created an environment in which the southerly winds in both upper and lower troposphere suddenly steered Meranti to the north;(2)The change of airflow direction above the typhoon led to a weak vertical wind shear,which in return facilitated the development of Meranti.Meanwhile,to the east of typhoon Meranti,the overlapped southwesterly jets in upper and lower atmosphere accelerated its tangential wind and contributed to its cyclonic development;(3)The cold vortex not only supplied positive vorticity to the typhoon,but also transported cold advection to its outer bands.In conjunction with the warm and moist air
文摘Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.
基金This study was supported by the National Natural Science Foundation of China(NSFC)Key Project"The response of phytoplankton to the interannual environmental variability in the upwelling region of Taiwan Strait"under contract No.40331004.
文摘Fhrough the examination of 377 samples of the Anthomedusae, eight new species and one new record are described.
基金supported by the National Natural Science Foundation of China under contract Nos 40376007 and 40306005.
文摘The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.
基金The National Natural Science Foundation of China under contract No.41576024the Key Research and Development Program of Guangxi under contract No.AB16380282+1 种基金the Guangxi Key Laboratory of Marine Environmental Science Program under contract No.GXKLHY15-01the Fundamental Research Fund of Guangxi Academy of Sciences under contract No.2018YBJ301
文摘Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizhou Island in Guangxi is similar to that in the eastern and central portions of the Qiongzhou Strait. Additionally, the Beihai Station in Guangxi exhibits a small salinity variation, whereas the Longmen and Bailongwei Stations, both of which are located far from the Qiongzhou Strait, mainly exhibit continental hydrological characteristics in summer. Moreover, a comparison of the multi-year ocean current data from the Qiongzhou Strait and ocean current observations from the Weizhou Island Station and recently installed current-measuring stations shows that the residual current in the Qiongzhou Strait flows westward in winter and summer. The numerical simulation results also indicate that water from the eastern Qiongzhou Strait enters the Beibu Gulf. The characteristics of the temperature and salinity distributions and analyses of the residual currents further confirm that the western Guangdong coastal current is the main source of the westward transport of water in the Qiongzhou Strait. The primary driver of the formation of the western Guangdong coastal current is the westward flow of freshwater from the Zhujiang (Pearl) River. This water enters the Beibu Gulf via the Qiongzhou Strait and enhances the formation of the cyclonic circulation in the northern Beibu Gulf. In summer, the strong influence of the southwesterly wind leads to the formation of a strong northward coastal current along the western coast of the Beibu Gulf. This process promotes the transport of low-salinity diluted water toward the open ocean and the formation of larger- scale cyclonic circulation around Weizhou Island in the eastern Beibu Gulf. The results of this study regarding the effects of the water inflow from the eastern Qiongzhou Strait to the Beibu Gulf on the Guangxi coastal circulation directly challenge conventional conc
基金Supported by the Knowledge Innovation Project of CAS (No KZCX2-YW-214,the NSFC (No 40806010)the National Basic Research Program of China (973 Program) (No 403603)
文摘The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.
基金The Ministry of Science and Technology of China (National Key Program for Developing Basic Science) undercontract No. 2007CB411803the National 863 High-tech Program under contract No. 2008AA09A402.
文摘The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.
基金supported by the Chinese Academy of Sciences' Knowledge Innovation Program (Grant Nos.KZCX2-YW-214 and KZCX2-YW-BR-04)the National Natural Science Foundation of China (Grant Nos.40806005,40640420557 and 40625017)supported by a grant from the City University of Hong Kong (Project No. 7002329)
文摘Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.
基金supported by the Research Fund for the Doctoral Program of Higher Education,China(No.2000042301)Ministry of Science and Technology of China supported this study through South China Sea Monsoon Experiment(SCSMEX)National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.
基金supported by the project of the National Nataral Science Foundation of China under contract Nos 40506006,40376007,40306005,40376005 and NCET-04-0646.
文摘The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.