This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is m...This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is made according to their energy demand and suitability for use. The energy calculations are performed on a model where 105 Nm3/h water saturated natural gas is processed at 30 °C. The pressure of the gas varies from 7 to 20 MPa. The required outlet concentration of water in natural gas is equivalent to the dew point temperature of -10 °C at gas pressure of 4 MPa.展开更多
The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthl...The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.展开更多
基金supported by the Inovation and Optimalization of Technologies for Natural Gas Dehydration(No.FR-TI1/173)
文摘This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is made according to their energy demand and suitability for use. The energy calculations are performed on a model where 105 Nm3/h water saturated natural gas is processed at 30 °C. The pressure of the gas varies from 7 to 20 MPa. The required outlet concentration of water in natural gas is equivalent to the dew point temperature of -10 °C at gas pressure of 4 MPa.
文摘The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.