This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered load...This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure.展开更多
In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil pe...In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil permeability towards the column.However,almost none of the consolidation theories for composite foundation comprehensively consider these factors until now.For this reason,a stress increment due to external loads changing simultaneously with time and depth was incorporated into the analysis,and three possible variation patterns of soil's horizontal permeability coefficient were considered to account for the detrimental influence of column installation.These three patterns included a constant distribution pattern(Pattern I),a linear distribution pattern(Pattern II),and a parabolic distribution pattern(Pattern III).Solutions were obtained for the average excess pore water pressures and the average degree of consolidation respectively.Then several special cases were discussed in detail based on the general solution obtained.Finally,comparisons were made,and the results show that the present solution is the most general rigorous solution in the literature,and it can be broken down into a number of previous solutions.The consolidation rate is accelerated with the increase in the value of the top to the bottom stress ratio.The consolidation rate calculated by the solution for Pattern I is less than that for Pattern II,which in turn is less than that for Pattern III.展开更多
The shaking table model test was conducted to investigate earthquake resistant behavior of stone columns under the intensity of an earthquake resistance of buildings is VIII. The test results show that when accelerati...The shaking table model test was conducted to investigate earthquake resistant behavior of stone columns under the intensity of an earthquake resistance of buildings is VIII. The test results show that when acceleration is less than 0.20 g, composite foundation is not liquefied, settlement is also small and pile dislocation is not observed; when acceleration is 0.3g, ground outside embankment's slope toe is liquefied and ground within stone column composite foundation is not. It is suggesting that reinforcement scale of stone column foundation should be widened properly. The designed stone column composite foundation meets the requirements for seismic resistance.展开更多
基金funding support from National Key Research and Development Program of China(Grant No.2021YFF0502200)National Natural Science Foundation of China(Grant Nos.52022070 and 51978516).
文摘This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure.
基金Project supported by the National Natural Science Foundation of China(No.51009135)the National Science Foundation for Post-doctoral Scientists of China(No.20100481183)the Science Foundation for Young Scholars of China University of Mining&Technology(No.2009A008)
文摘In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil permeability towards the column.However,almost none of the consolidation theories for composite foundation comprehensively consider these factors until now.For this reason,a stress increment due to external loads changing simultaneously with time and depth was incorporated into the analysis,and three possible variation patterns of soil's horizontal permeability coefficient were considered to account for the detrimental influence of column installation.These three patterns included a constant distribution pattern(Pattern I),a linear distribution pattern(Pattern II),and a parabolic distribution pattern(Pattern III).Solutions were obtained for the average excess pore water pressures and the average degree of consolidation respectively.Then several special cases were discussed in detail based on the general solution obtained.Finally,comparisons were made,and the results show that the present solution is the most general rigorous solution in the literature,and it can be broken down into a number of previous solutions.The consolidation rate is accelerated with the increase in the value of the top to the bottom stress ratio.The consolidation rate calculated by the solution for Pattern I is less than that for Pattern II,which in turn is less than that for Pattern III.
文摘The shaking table model test was conducted to investigate earthquake resistant behavior of stone columns under the intensity of an earthquake resistance of buildings is VIII. The test results show that when acceleration is less than 0.20 g, composite foundation is not liquefied, settlement is also small and pile dislocation is not observed; when acceleration is 0.3g, ground outside embankment's slope toe is liquefied and ground within stone column composite foundation is not. It is suggesting that reinforcement scale of stone column foundation should be widened properly. The designed stone column composite foundation meets the requirements for seismic resistance.