In this paper,we obtain the stability of solutions to stochastic functional differential equations with infinite delay at phase space BC((-∞,0];Rd),under non-Lipschitz condition with Lipschitz condition being conside...In this paper,we obtain the stability of solutions to stochastic functional differential equations with infinite delay at phase space BC((-∞,0];Rd),under non-Lipschitz condition with Lipschitz condition being considered as a special case and a weakened linear growth condition by means of the corollary of Bihari inequality.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的...在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的价格过程服从常方差弹性模型.考虑与历史业绩相关的现金流量,保险公司的财富过程由一个时滞随机微分方程刻画,在负指数效用最大化的目标下求解了时滞最优投资与再保险控制问题,分别在投资与再保险和纯投资两种情形下得到最优策略和值函数的解析表达式.最后通过数值算例进一步说明主要参数对最优策略和值函数的影响.展开更多
In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] usi...In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.展开更多
A continuous-time Kiefer-Wolfowitz algorithm with randomized differences andwith truncations at randomly varying bounds is proposed. It is shown that the algorithmconverges to the desired value almost surely under mil...A continuous-time Kiefer-Wolfowitz algorithm with randomized differences andwith truncations at randomly varying bounds is proposed. It is shown that the algorithmconverges to the desired value almost surely under mild conditions. The rate of convergenceand the asymptotic normality of the algorithm are also established.展开更多
This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performanc...This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performance, we investigate the optimal investment strategies under the worst-case scenario and the stochastic control framework with delay. The financial market is assumed to be either in a normal state(crash-free) or in a crash state. In the normal state the prices of risky assets behave as geometric Brownian motion, and in the crash state the prices of risky assets suddenly drop by a certain relative amount, which induces to a dropping of the total wealth relative to that of crash-free state. We obtain the ordinary differential equations satisfied by the optimal investment strategies and the optimal value functions under the power and exponential utilities, respectively. Finally, a numerical simulation is provided to illustrate the sensitivity of the optimal strategies with respective to the model parameters.展开更多
In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsuran...In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
基金Supported by Natural Science Foundation of Anhui Province (070416225)Foundation for Young Teachers in Anhui Agricultural University
文摘In this paper,we obtain the stability of solutions to stochastic functional differential equations with infinite delay at phase space BC((-∞,0];Rd),under non-Lipschitz condition with Lipschitz condition being considered as a special case and a weakened linear growth condition by means of the corollary of Bihari inequality.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的价格过程服从常方差弹性模型.考虑与历史业绩相关的现金流量,保险公司的财富过程由一个时滞随机微分方程刻画,在负指数效用最大化的目标下求解了时滞最优投资与再保险控制问题,分别在投资与再保险和纯投资两种情形下得到最优策略和值函数的解析表达式.最后通过数值算例进一步说明主要参数对最优策略和值函数的影响.
基金Supported by the Special Foundation for Young Talent of Fujian Province (2008F306010002)
文摘In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.
文摘A continuous-time Kiefer-Wolfowitz algorithm with randomized differences andwith truncations at randomly varying bounds is proposed. It is shown that the algorithmconverges to the desired value almost surely under mild conditions. The rate of convergenceand the asymptotic normality of the algorithm are also established.
基金Supported by the National Natural Science Foundation of China(71501050)Startup Foundation for Doctors of ZhaoQing University(611-612282)the National Science Foundation of Guangdong Province of China(2017A030310660)
文摘This paper considers a worst-case investment optimization problem with delay for a fund manager who is in a crash-threatened financial market. Driven by existing of capital inflow/outflow related to history performance, we investigate the optimal investment strategies under the worst-case scenario and the stochastic control framework with delay. The financial market is assumed to be either in a normal state(crash-free) or in a crash state. In the normal state the prices of risky assets behave as geometric Brownian motion, and in the crash state the prices of risky assets suddenly drop by a certain relative amount, which induces to a dropping of the total wealth relative to that of crash-free state. We obtain the ordinary differential equations satisfied by the optimal investment strategies and the optimal value functions under the power and exponential utilities, respectively. Finally, a numerical simulation is provided to illustrate the sensitivity of the optimal strategies with respective to the model parameters.
基金This research was supported by the National Natural Science Foundation of China(No.71801186)the Science Foundation of Ministry of Education of China(No.18YJC630001)the Natural Science Foundation of Guangdong Province of China(No.2017A030310660).
文摘In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金The China Scholarship Council,the National Basic Research Program(2009CB219301) of China(973) in partthe National Public Benefit Scientific Research Foundation(201011078) of China+2 种基金the National Innovation Research Project for Exploration and Development of Oil Shale(OSP-02 and OSR-02)the NSF(41304087,11071026,61133011,61170092,60973088,61202308,11001100,11171131 and 11026043) of Chinathe Basic Research Foundation of Jilin University in 2012
文摘In this paper, we have studied the necessary maximum principle of stochastic optimal control problem with delay and jump diffusion.