Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinator...Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinatorial analysis and Riemann zeta function; several identities of Stifling series are established, and the Euler's result for ∑ Hn/n^k-l, k ≥ 3 is given a new probabilistic proof.展开更多
The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbe...The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.展开更多
In this paper,we give several identities of finite sums and some infinite series involving powers and inverse of binomial coefficients,which extends the results of T.Trif.
In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix method...In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix methods. In addition, we establish some new equalities and relations involving high-order Cauchy numbers and polynomials, high-order Daehee numbers and polynomials, the generalized Bell polynomials, the Bernoulli numbers and polynomials, high-order Changhee polynomials, high-order Changhee-Genocchi polynomials, the combinatorial numbers, Lah numbers and Stirling numbers, etc.展开更多
In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.
In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub>...In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).展开更多
The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a study of the spectral theory of powers of the classical second-order Legendre differential operator. In 2008, Andrews and L...The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a study of the spectral theory of powers of the classical second-order Legendre differential operator. In 2008, Andrews and Littlejohn gave a combinatorial interpretation of these numbers in terms of set partitions. In 2012, Mongelli noticed that both the Jacobi-Stirling and the Legendre-Stirling numbers are in fact specializations of certain elementary and complete symmetric functions and used this observation to give a combinatorial interpretation for the generalized Legendre-Stirling numbers. In this paper we provide a second combinatorial interpretation for the generalized Legendre-Stirling numbers which more directly generalizes the definition of Andrews and Littlejohn and give a combinatorial bijection between our interpretation and the Mongelli interpretation. We then utilize our interpretation to prove a number of new identities for the generalized Legendre-Stirling numbers.展开更多
This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer ...This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer theorem, Drown-Sprugnoli transfer formula and generalized Brown transfer lemma which display some transfer methods of different kinds of Hsu-Riordau arrays and identities respectively.展开更多
In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions...In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.展开更多
In this article, we study the generalized Bernoulli learning model based on the probability of success pi = ai /n where i = 1,2,...n 0a1a2ann and n is positive integer. This gives the previous results given by Abdulna...In this article, we study the generalized Bernoulli learning model based on the probability of success pi = ai /n where i = 1,2,...n 0a1a2ann and n is positive integer. This gives the previous results given by Abdulnasser and Khidr [1], Rashad [2] and EL-Desouky and Mahfouz [3] as special cases, where pi = i/n pi = i2/n2 and pi = ip/np respectively. The probability function P(Wn = k) of this model is derived, some properties of the model are obtained and the limiting distribution of the model is given.展开更多
A modified approach via differential operator is given to derive a new family of generalized Stirling numbers of the first kind. This approach gives us an extension of the techniques given by El-Desouky?[1]?and Gould?...A modified approach via differential operator is given to derive a new family of generalized Stirling numbers of the first kind. This approach gives us an extension of the techniques given by El-Desouky?[1]?and Gould?[2]. Some new combinatorial identities and many relations between different types of Stirling numbers are found. Furthermore, some interesting special cases of the generalized Stirling numbers of the first kind are deduced. Also, a connection between these numbers and the generalized harmonic numbers is derived. Finally, some applications in coherent states and matrix representation of some results obtained are given.展开更多
We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z...We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices.展开更多
基金the Mathematical Tianyuan Foundation (Grant No.A0324645) of China
文摘Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinatorial analysis and Riemann zeta function; several identities of Stifling series are established, and the Euler's result for ∑ Hn/n^k-l, k ≥ 3 is given a new probabilistic proof.
基金the Guangdong Provincial Natural Science Foundation (No.05005928)the National Natural Science Foundation (No.10671155) of P.R.China
文摘The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function.
基金Supported by the National Natural Science Foundation of China (Grant No. 11061020)the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 20080404MS010)
文摘In this paper,we give several identities of finite sums and some infinite series involving powers and inverse of binomial coefficients,which extends the results of T.Trif.
文摘In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix methods. In addition, we establish some new equalities and relations involving high-order Cauchy numbers and polynomials, high-order Daehee numbers and polynomials, the generalized Bell polynomials, the Bernoulli numbers and polynomials, high-order Changhee polynomials, high-order Changhee-Genocchi polynomials, the combinatorial numbers, Lah numbers and Stirling numbers, etc.
文摘In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.
文摘In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x).
文摘The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a study of the spectral theory of powers of the classical second-order Legendre differential operator. In 2008, Andrews and Littlejohn gave a combinatorial interpretation of these numbers in terms of set partitions. In 2012, Mongelli noticed that both the Jacobi-Stirling and the Legendre-Stirling numbers are in fact specializations of certain elementary and complete symmetric functions and used this observation to give a combinatorial interpretation for the generalized Legendre-Stirling numbers. In this paper we provide a second combinatorial interpretation for the generalized Legendre-Stirling numbers which more directly generalizes the definition of Andrews and Littlejohn and give a combinatorial bijection between our interpretation and the Mongelli interpretation. We then utilize our interpretation to prove a number of new identities for the generalized Legendre-Stirling numbers.
文摘This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer theorem, Drown-Sprugnoli transfer formula and generalized Brown transfer lemma which display some transfer methods of different kinds of Hsu-Riordau arrays and identities respectively.
基金funded by Research Deanship at the University of Ha’il,Saudi Arabia,through Project No.RG-21144.
文摘In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given.
文摘In this article, we study the generalized Bernoulli learning model based on the probability of success pi = ai /n where i = 1,2,...n 0a1a2ann and n is positive integer. This gives the previous results given by Abdulnasser and Khidr [1], Rashad [2] and EL-Desouky and Mahfouz [3] as special cases, where pi = i/n pi = i2/n2 and pi = ip/np respectively. The probability function P(Wn = k) of this model is derived, some properties of the model are obtained and the limiting distribution of the model is given.
文摘A modified approach via differential operator is given to derive a new family of generalized Stirling numbers of the first kind. This approach gives us an extension of the techniques given by El-Desouky?[1]?and Gould?[2]. Some new combinatorial identities and many relations between different types of Stirling numbers are found. Furthermore, some interesting special cases of the generalized Stirling numbers of the first kind are deduced. Also, a connection between these numbers and the generalized harmonic numbers is derived. Finally, some applications in coherent states and matrix representation of some results obtained are given.
文摘We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices.