期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
华蘅芳数在幂和问题中的新应用 被引量:11
1
作者 罗见今 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第4期750-756,共7页
自然数的幂和问题具有悠久的历史,亦不乏现代的兴趣。一般学者不了解清代数学家华蘅芳的成果。本文改进了华氏效的定义;针对该问题建立了新的取盒—放球模型,给出幂和的组合解释;应用华氏数获得了简捷的幂和公式。文末介绍了华氏数的历... 自然数的幂和问题具有悠久的历史,亦不乏现代的兴趣。一般学者不了解清代数学家华蘅芳的成果。本文改进了华氏效的定义;针对该问题建立了新的取盒—放球模型,给出幂和的组合解释;应用华氏数获得了简捷的幂和公式。文末介绍了华氏数的历史来源。 展开更多
关键词 自然散的幂的和 华氏散 组合模型 斯特灵数 华蕾芳
下载PDF
Product of Uniform Distribution and Stirling Numbers of the First Kind 被引量:6
2
作者 Ping SUN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1435-1442,共8页
Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinator... Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinatorial analysis and Riemann zeta function; several identities of Stifling series are established, and the Euler's result for ∑ Hn/n^k-l, k ≥ 3 is given a new probabilistic proof. 展开更多
关键词 stirling numbers generating function uniform distribution MOMENT Riemann zeta function
原文传递
Bernoulli数与Stirling数 被引量:6
3
作者 高泽图 《海南大学学报(自然科学版)》 CAS 2001年第1期8-12,共5页
应用形式幂级数的方法 ,研究Bernoulli数与Stirling数 ,指出它们之间的关系 ,获得几个包含Bernoulli数和Stirling数的恒等式 .
关键词 形式幂级数 BERNOULLI数 stirling 恒等式 组合数学 生成函数 数值表
下载PDF
Applications of an Explicit Formula for the Generalized Euler Numbers 被引量:3
4
作者 Guo Dong LIU Wen Peng ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第2期343-352,共10页
The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbe... The authors establish an explicit formula for the generalized Euler NumbersE2n^(x), and obtain some identities and congruences involving the higher'order Euler numbers, Stirling numbers, the central factorial numbers and the values of the Riemann zeta-function. 展开更多
关键词 the generalized Euler numbers stirling numbers the central factorial numbers Dirichlet L-function CONGRUENCES
原文传递
高阶Bernoulli数与Stirling数的几个恒等式 被引量:4
5
作者 朱伟义 《大学数学》 北大核心 2006年第1期83-86,共4页
利用第一、二类高阶Bernoulli数和二类Stirling数S1(n,k),S2(n,k)的定义.研究了二类高阶Bernoulli数母函数的幂级数展开,揭示了二类高阶Bernoulli数之间以及与第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间的内在联系,得到了... 利用第一、二类高阶Bernoulli数和二类Stirling数S1(n,k),S2(n,k)的定义.研究了二类高阶Bernoulli数母函数的幂级数展开,揭示了二类高阶Bernoulli数之间以及与第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间的内在联系,得到了几个关于二类高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间有趣的恒等式. 展开更多
关键词 高阶BERNOULLI数 stirling 恒等式
下载PDF
Stirling公式的一个推广 被引量:5
6
作者 谢子填 《数学的实践与认识》 CSCD 北大核心 2006年第6期331-333,共3页
关于n!的S tirling渐近式,无论在理论上或者实际上,都有重要应用.应用Eu ler-M aclau lrin求和公式及Γ函数的性质,推导出一般等差级数连乘积并有余项估计式的类似表达式.
关键词 stirling渐近式 Beroulli数 Г函数
原文传递
关于Euler数与Stirling数的几个恒等式 被引量:4
7
作者 高泽图 《海南大学学报(自然科学版)》 CAS 2002年第1期12-14,共3页
应用形式幂级数的方法 ,获得几个包含Euler数与Stirling数的恒等式 .
关键词 形式幂级数 EULER数 stirling 恒等式 组合数学 数论 幂级数展形式
下载PDF
Identities Involving Powers and Inverse of Binomial Coefficients 被引量:4
8
作者 Wu Yun G ao Wa 《Journal of Mathematical Research and Exposition》 CSCD 2011年第6期1021-1029,共9页
In this paper,we give several identities of finite sums and some infinite series involving powers and inverse of binomial coefficients,which extends the results of T.Trif.
关键词 inverse of binomial coefficient IDENTITIES stirling numbers
下载PDF
高阶退化Bernoulli数和多项式 被引量:3
9
作者 刘国栋 《数学杂志》 CSCD 北大核心 2005年第3期283-288,共6页
本文研究了高阶退化Bernoulli数和多项式的两个显明公式,得到了一个包含高阶Bernoulli数和Stirling数的恒等式,并推广了F.H.Howard[1],S.Shirai和K.I.Sato[7]的结果.
关键词 退化Bernoulli数和多项式 高阶Bernoulli stirling 显明公式
下载PDF
Some Identities Involving the High-Order Cauchy Polynomials
10
作者 Liwei Liu   Wuyungaowa 《Journal of Applied Mathematics and Physics》 2022年第4期1126-1145,共20页
In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix method... In this paper, we consider the Cauchy numbers and polynomials of order k and give some relation between Cauchy polynomials of order k and special polynomials by using generating functions and the Riordan matrix methods. In addition, we establish some new equalities and relations involving high-order Cauchy numbers and polynomials, high-order Daehee numbers and polynomials, the generalized Bell polynomials, the Bernoulli numbers and polynomials, high-order Changhee polynomials, high-order Changhee-Genocchi polynomials, the combinatorial numbers, Lah numbers and Stirling numbers, etc. 展开更多
关键词 High-Order Daehee numbers and Polynomials The Bernoulli numbers and Polynomials High-Order Changhee Polynomials stirling numbers The Lah numbers
下载PDF
Riordan Arrays and Some Identities Containing the Genocchi Numbers 被引量:1
11
作者 FANG Qin WANG Tian Ming 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期799-805,共7页
In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.
关键词 Genocchi numbers Riordan arrays stirling numbers Cauchy numbers.
下载PDF
On Polynomials Rn(x) Related to the Stirling Numbers and the Bell Polynomials Associated with the p-Adic Integral on
12
作者 Hui Young Lee Cheon Seoung Ryoo 《Open Journal of Discrete Mathematics》 2016年第2期89-98,共10页
In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub>... In this paper, one introduces the polynomials R<sub>n</sub>(x) and numbers R<sub>n</sub> and derives some interesting identities related to the numbers and polynomials: R<sub>n</sub> and R<sub>n</sub>(x). We also give relation between the Stirling numbers, the Bell numbers, the R<sub>n</sub> and R<sub>n</sub>(x). 展开更多
关键词 The Euler numbers and Polynomials The stirling numbers The Bell Polynomials and numbers
下载PDF
Generalized Legendre-Stirling Numbers
13
作者 K. C. Garrett Kendra Killpatrick 《Open Journal of Discrete Mathematics》 2014年第4期109-114,共6页
The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a study of the spectral theory of powers of the classical second-order Legendre differential operator. In 2008, Andrews and L... The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a study of the spectral theory of powers of the classical second-order Legendre differential operator. In 2008, Andrews and Littlejohn gave a combinatorial interpretation of these numbers in terms of set partitions. In 2012, Mongelli noticed that both the Jacobi-Stirling and the Legendre-Stirling numbers are in fact specializations of certain elementary and complete symmetric functions and used this observation to give a combinatorial interpretation for the generalized Legendre-Stirling numbers. In this paper we provide a second combinatorial interpretation for the generalized Legendre-Stirling numbers which more directly generalizes the definition of Andrews and Littlejohn and give a combinatorial bijection between our interpretation and the Mongelli interpretation. We then utilize our interpretation to prove a number of new identities for the generalized Legendre-Stirling numbers. 展开更多
关键词 stirling numbers Legendre-stirling numbers SET PARTITIONS
下载PDF
堆垒级数部分和的一般公式 被引量:3
14
作者 孙建新 《绍兴文理学院学报》 2010年第7期1-5,共5页
利用阶乘幂差分的重要性质,得到堆垒级数部分和的一般公式.
关键词 阶乘幂 差分算子 和分算子 stirling 堆垒级数 部分和
下载PDF
Hsu-Riordan Array/Partial Monoid 被引量:1
15
作者 阴东升 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第2期253-260,共8页
This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer ... This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer theorem, Drown-Sprugnoli transfer formula and generalized Brown transfer lemma which display some transfer methods of different kinds of Hsu-Riordau arrays and identities respectively. 展开更多
关键词 Riordan array/Hsu-Riordan array partial monoid generating functon stirling numbers transfer formula IDENTITY
下载PDF
A Note on Bell-Based Bernoulli and Euler Polynomials of Complex Variable
16
作者 N.Alam W.A.Khan +5 位作者 S.Obeidat G.Muhiuddin N.S.Diab H.N.Zaidi A.Altaleb L.Bachioua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期187-209,共23页
In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions... In this article,we construct the generating functions for new families of special polynomials including two parametric kinds of Bell-based Bernoulli and Euler polynomials.Some fundamental properties of these functions are given.By using these generating functions and some identities,relations among trigonometric functions and two parametric kinds of Bell-based Bernoulli and Euler polynomials,Stirling numbers are presented.Computational formulae for these polynomials are obtained.Applying a partial derivative operator to these generating functions,some derivative formulae and finite combinatorial sums involving the aforementioned polynomials and numbers are also obtained.In addition,some remarks and observations on these polynomials are given. 展开更多
关键词 Bernoulli polynomials euler polynomials bell polynomials stirling numbers
下载PDF
Bernoulli数B_n与第二类Stirling数S_2(n,k)的关系 被引量:2
17
作者 李晓冬 《太原师范学院学报(自然科学版)》 2011年第4期29-31,共3页
应用实函数差分的方法研究Bernoulli数与第二类Stirling数,指出它们之间的关系,得到包含Bn和S2(n,k)的恒等式.
关键词 函数 算子 stirling BERNOULLI数
下载PDF
Extension of Generalized Bernoulli Learning Models
18
作者 B. S. El-Desouky F. A. Shiha A. M. Magar 《Open Journal of Modelling and Simulation》 2015年第1期26-31,共6页
In this article, we study the generalized Bernoulli learning model based on the probability of success pi = ai /n where i = 1,2,...n 0a1a2ann and n is positive integer. This gives the previous results given by Abdulna... In this article, we study the generalized Bernoulli learning model based on the probability of success pi = ai /n where i = 1,2,...n 0a1a2ann and n is positive integer. This gives the previous results given by Abdulnasser and Khidr [1], Rashad [2] and EL-Desouky and Mahfouz [3] as special cases, where pi = i/n pi = i2/n2 and pi = ip/np respectively. The probability function P(Wn = k) of this model is derived, some properties of the model are obtained and the limiting distribution of the model is given. 展开更多
关键词 stirling numbers BERNOULLI Learning Models Comtet numbers Inclusion-Exclusion PRINCIPLE
下载PDF
A Family of Generalized Stirling Numbers of the First Kind
19
作者 Beih S. El-Desouky Nabela A. El-Bedwehy +1 位作者 Abdelfattah Mustafa Fatma M. Abdel Menem 《Applied Mathematics》 2014年第10期1573-1585,共13页
A modified approach via differential operator is given to derive a new family of generalized Stirling numbers of the first kind. This approach gives us an extension of the techniques given by El-Desouky?[1]?and Gould?... A modified approach via differential operator is given to derive a new family of generalized Stirling numbers of the first kind. This approach gives us an extension of the techniques given by El-Desouky?[1]?and Gould?[2]. Some new combinatorial identities and many relations between different types of Stirling numbers are found. Furthermore, some interesting special cases of the generalized Stirling numbers of the first kind are deduced. Also, a connection between these numbers and the generalized harmonic numbers is derived. Finally, some applications in coherent states and matrix representation of some results obtained are given. 展开更多
关键词 stirling numbers Comtet numbers CREATION ANNIHILATION Differential Operator MAPLE Program
下载PDF
Generalized Eulerian Numbers
20
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2018年第3期335-361,共27页
We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z... We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices. 展开更多
关键词 EULERIAN numbers EULERIAN Polynomials stirling numbers PERMUTATIONS Binomials HYPERGEOMETRIC Functions Geometric Series Vandermonde’s Convolution Identity Recurrence Relations Operator ORDERINGS
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部