期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
柔性多体系统动力学研究及存在的问题 被引量:11
1
作者 覃正 叶尚辉 刘明治 《力学进展》 EI CSCD 北大核心 1994年第2期248-256,共9页
本文对柔性多体系统动力学研究领域中动力学模型的建立、求解以及该领域中存在的问题进行了简要综述。
关键词 柔性多体系统 动力学 结构力学
下载PDF
液压动态仿真软件积分算法的改进与应用 被引量:7
2
作者 张辉 郁凯元 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第2期479-482,487,共5页
描述液压系统动态特性的微分方程组一般具有高度非线性和病态性,通常所采用定步长四阶 Rung-Kutta (R-K)算法的 DSHW 仿真软件,为了达到高的仿真精度,在仿真积分时必须取很小的步长,这增加了仿真计算的时间。研究编制了变步长四阶 R-K ... 描述液压系统动态特性的微分方程组一般具有高度非线性和病态性,通常所采用定步长四阶 Rung-Kutta (R-K)算法的 DSHW 仿真软件,为了达到高的仿真精度,在仿真积分时必须取很小的步长,这增加了仿真计算的时间。研究编制了变步长四阶 R-K 法和变步长 Gill 法的算法程序,将三种算法的仿真计算收敛速度和计算精度进行了比较。结果表明,变步长四阶 R-K 法收敛速度最快,变步长 Gill 法计算精度最高。 展开更多
关键词 动态仿真 积分算法 液压系统 病态方程
下载PDF
任意阶显式精细积分多步法在刚性方程中的应用研究 被引量:4
3
作者 闫海青 唐晨 +1 位作者 刘铭 张桂敏 《工程数学学报》 CSCD 北大核心 2004年第6期1037-1040,共4页
将作者提出的高精度任意阶显式精细积分多步法应用于刚性方程中。本文的方法可方便地进行不 同阶次的运算。将本文的方法与精确值和其它数值计算方法进行比较,数值计算结果表明本文方 法是一种高精度、高效率的方法。
关键词 刚性方程 精细积分多步法 变阶次计算
下载PDF
分布式存储环境下非平衡刚性方程组的数值并行计算 被引量:6
4
作者 刘杰 胡庆丰 +1 位作者 韩国兴 迟利华 《计算物理》 CSCD 北大核心 2002年第1期86-88,共3页
采用非平衡刚性方程组的数值模拟计算来研究辐射的非平衡现象 ,分析了数值模拟计算过程中的并行性 ,提出一种负载平衡方法 ,为了增加数据局部性提出了一种多机串行计算方法 .给出相应的并行算法 ,分析了并行算法的通信复杂性 。
关键词 非平衡现象 数值并行计算 大量平衡刚性方程组 辐射 多机串行计算 分布式存储
下载PDF
多体系统动力学刚性方程广义-α投影法 被引量:5
5
作者 丁洁玉 潘振宽 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第4期572-578,共7页
利用约束投影方法,将广义-α方法进行改进应用于多体系统动力学刚性方程求解.与位移约束、速度级约束和加速度级约束投影的结合可以使各级约束在长时间仿真情况下能够同时在较高精度上得到保持;将能量保持作为约束流形进行投影,可以在... 利用约束投影方法,将广义-α方法进行改进应用于多体系统动力学刚性方程求解.与位移约束、速度级约束和加速度级约束投影的结合可以使各级约束在长时间仿真情况下能够同时在较高精度上得到保持;将能量保持作为约束流形进行投影,可以在长时间仿真时将能量变化控制在较小范围内,避免广义-α方法引入数值阻尼后产生的能量衰减问题. 展开更多
关键词 多体系统动力学 刚性方程 广义-α方法 约束投影法
原文传递
Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method 被引量:1
6
作者 Tianmin Han Yuhuan Han 《Applied Mathematics》 2010年第3期222-229,共8页
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv... In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper. 展开更多
关键词 Nonlinear equations Ordinary Differential equations Numerical Integration Fixed Point ITERATION Newton’s Method stiff ILL-CONDITIONED
下载PDF
烃系燃料的简化自燃模型 被引量:2
7
作者 臧成 蒋炎坤 +1 位作者 陈国华 马元镐 《华中理工大学学报》 CSCD 北大核心 1998年第7期39-41,共3页
提出了一种用于汽油机爆震预测的简化自燃模型.模型由13种成分、20个反应组成,采用半隐式龙格-库塔和后向差分法求解.使用模型在快速压缩机和发动机上进行了模拟计算,结果表明本模型能够较好地模拟两阶段自燃着火且具有良好的... 提出了一种用于汽油机爆震预测的简化自燃模型.模型由13种成分、20个反应组成,采用半隐式龙格-库塔和后向差分法求解.使用模型在快速压缩机和发动机上进行了模拟计算,结果表明本模型能够较好地模拟两阶段自燃着火且具有良好的适用性. 展开更多
关键词 汽油机 爆震 刚性方程组 烃系燃料 自然模型
下载PDF
A-stable Explicit Nonlinear Runge-Kutta Methods
8
作者 曹阳 李庆扬 《Tsinghua Science and Technology》 SCIE EI CAS 1998年第4期1227-1232,共6页
Nonlinear methods are combined with Runge Kutta methods to develop A stable explicit nonlinear Runge Kutta methods for solving stiff differential equations and a class of the third order formulae are constructed.I... Nonlinear methods are combined with Runge Kutta methods to develop A stable explicit nonlinear Runge Kutta methods for solving stiff differential equations and a class of the third order formulae are constructed.It avoids solving the nonlinear equations which implicit methods must solve. Implementation is very simple and the computation cost for each step is small.This paper uses a shift transformation to avoid the order reduction of nonlinear methods at y = 0 . Thus the method is very practicable. Numerical tests show that the method is more efficient than explicit methods or implicit methods of the same order. 展开更多
关键词 stiff equations A stability nonlinear methods Runge Kutta methods nonlinear Runge Kutta methods
原文传递
On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws 被引量:1
9
作者 Michael Dumbser Ariunaa Uuriintsetseg Olindo Zanotti 《Communications in Computational Physics》 SCIE 2013年第7期301-327,共27页
In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws.High order accuracy in space is obtain... In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws.High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkinmethod recently proposed in[20].In the Lagrangian framework considered here,the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element.For the spacetime basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points.The moving space-time elements are mapped to a reference element using an isoparametric approach,i.e.the spacetime mapping is defined by the same basis functions as the weak solution of the PDE.We show some computational examples in one space-dimension for non-stiff and for stiff balance laws,in particular for the Euler equations of compressible gas dynamics,for the resistive relativistic MHD equations,and for the relativistic radiation hydrodynamics equations.Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time. 展开更多
关键词 Arbitrary Lagrangian-Eulerian finite volume scheme moving mesh high order WENOreconstruction local space-timeDG predictor moving isoparametric space-time elements stiff relaxation source terms Euler equations resistive relativistic MHD equations relativistic radiation hydrodynamics
原文传递
GENERAL FULL IMPLICIT STRONG TAYLOR APPROXIMATIONS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS
10
作者 Kai Liu Guiding Gu 《Journal of Computational Mathematics》 SCIE CSCD 2022年第4期541-569,共29页
In this paper,we present the backward stochastic Taylor expansions for a Ito process,including backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions.We construct the general full implicit strong T... In this paper,we present the backward stochastic Taylor expansions for a Ito process,including backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions.We construct the general full implicit strong Taylor approximations(including Ito-Taylor and Stratonovich-Taylor schemes)with implicitness in both the deterministic and the stochastic terms for the stiff stochastic differential equations(SSDE)by employing truncations of backward stochastic Taylor expansions.We demonstrate that these schemes will converge strongly with corresponding order 1,2,3,....Mean-square stability has been investigated for full implicit strong Stratonovich-Taylor scheme with order 2,and it has larger meansquare stability region than the explicit and the semi-implicit strong Stratonovich-Taylor schemes with order 2.We can improve the stability of simulations considerably without too much additional computational effort by using our full implicit schemes.The full implicit strong Taylor schemes allow a larger range of time step sizes than other schemes and are suitable for SSDE with stiffness on both the drift and the diffusion terms.Our numerical experiment show these points. 展开更多
关键词 stiff stochastic differential equations APPROXIMATIONS Backward Stochastic Taylor expansions Full implicit Taylor methods
原文传递
Stability and Convergence of the Canonical Euler Splitting Method for Nonlinear Composite Stiff Functional Differential-Algebraic Equations
11
作者 Hongliang Liu Yameng Zhang +1 位作者 Haodong Li Shoufu Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第6期1276-1301,共26页
A novel canonical Euler splitting method is proposed for nonlinear compositestiff functional differential-algebraic equations, the stability and convergence of themethod is evidenced, theoretical results are further c... A novel canonical Euler splitting method is proposed for nonlinear compositestiff functional differential-algebraic equations, the stability and convergence of themethod is evidenced, theoretical results are further confirmed by some numerical experiments.Especially, the numerical method and its theories can be applied to specialcases, such as delay differential-algebraic equations and integral differential-algebraicequations. 展开更多
关键词 Canonical Euler splitting method nonlinear composite stiff functional differentialalgebraic equations stability convergence.
原文传递
General Modified Split-Step Balanced Methods for Stiff Stochastic Differential Equations 被引量:1
12
作者 殷政伟 甘四清 李荣德 《Journal of Donghua University(English Edition)》 EI CAS 2013年第3期189-196,共8页
A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already repor... A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods. 展开更多
关键词 split-step balanced methods stiff stochastic differential equations strong convergence mean-square stability
下载PDF
黏性流体中运动界面上的速度分解
13
作者 熊辉 《数学杂志》 CSCD 北大核心 2014年第4期696-702,共7页
本文研究黏性流体与零厚度弹性材料界面上的耦合运动问题.利用沉浸边界法与时间步长法,半Lagrange离散法,对速度分解后的Stokes部分与正则部分进行求解,获得了关于耦合运动中二阶PDE求解的一般方法,推广了文献[14,15,18]的结果.
关键词 Navier-Stokes流 刚性方程 沉浸界面 边界积分
下载PDF
解刚性问题的一类指数拟合方法
14
作者 马国卫 刘少平 《应用数学》 CSCD 北大核心 2006年第S1期119-123,共5页
提出一类通过变量代换Y(x)=e^((x-x_r)L)y(x)构建的指数拟合的方法求解刚性问题.对标量模型方程y′=λy,Re(λ)<0,这类变量代换的方法具有精确指数拟合的特点.理论分析和数值试验证明,在不降低原有积分方法相容性的前提下,将该代换... 提出一类通过变量代换Y(x)=e^((x-x_r)L)y(x)构建的指数拟合的方法求解刚性问题.对标量模型方程y′=λy,Re(λ)<0,这类变量代换的方法具有精确指数拟合的特点.理论分析和数值试验证明,在不降低原有积分方法相容性的前提下,将该代换用于普通的数值算法之后,能取得比普通的数值算法更好的收敛性,稳定性及计算精度. 展开更多
关键词 刚性问题 变量代换 指数拟合
下载PDF
非线性刚性变延迟微分方程单支方法的数值稳定性 被引量:22
15
作者 王文强 李寿佛 《计算数学》 CSCD 北大核心 2002年第4期417-430,共14页
1.引言 现有文献中对于非线性延迟微分方程渐近稳定性及其数值方法的稳定性研究大都有局限于常延迟的情形,例如可参见匡咬勋[1-3],黄乘明[4],Torelli[5]等人的大量工作.
关键词 非线性刚性变延迟微分方程 单支方法 渐近稳定性 数值稳定性
原文传递
B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations 被引量:18
16
作者 李寿佛 《Science China Mathematics》 SCIE 2003年第5期662-674,共21页
B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations (VFDEs) are established which provide unified theoretical foundation for the studyof Runge-... B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations (VFDEs) are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems (IVPs) in ordinary differentialequations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs) and VFDEs ofother type which appear in practice. 展开更多
关键词 stiff functional differential equations RUNGE-KUTTA methods B-stability B-con-vergence.
原文传递
Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces 被引量:20
17
作者 LI Shoufu 《Science China Mathematics》 SCIE 2005年第3期372-387,共16页
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified the... A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice. 展开更多
关键词 NONLINEAR stiff problems functional differential equations stability contractivity.
原文传递
线圈炮—电磁同轴发射器及其系统分析 被引量:17
18
作者 王德满 王跃进 谢慧才 《宇航学报》 EI CSCD 北大核心 1996年第4期79-82,共4页
线圈炮在宇航与国防中有重要应用前景。本文先简述其分析模型与方程。方程为非线性变系数常微分方程的初值问题,有时呈刚性。用Treanor方法求解,所得结果与国外已有装置的试验数据符合良好。并对一个小炮做了初步的原理设计。
关键词 电磁发射器 线圈炮 刚性方程
下载PDF
刚性Volterra泛函微分方程算法理论及高效算法 被引量:13
19
作者 李寿佛 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第3期581-586,共6页
首先介绍刚性 Volterra 泛函微分方程的稳定性理论及其数值方法的 B 理论。这项工作为刚性延迟微分方程、刚性积分微分方程以及其它各种类型的刚性泛函微分方程的研究提供了统一的理论基础。其次以该理论为指针推荐高效算法,其中包括向... 首先介绍刚性 Volterra 泛函微分方程的稳定性理论及其数值方法的 B 理论。这项工作为刚性延迟微分方程、刚性积分微分方程以及其它各种类型的刚性泛函微分方程的研究提供了统一的理论基础。其次以该理论为指针推荐高效算法,其中包括向后 Euler 方法、二阶 BDF 方法、并行多值混合方法及实特征值多步 Runge-Kutta 法。 展开更多
关键词 数值分析 刚性泛函微分方程 Runge.Kutta法 一般线性方法 B-理论
下载PDF
一类A(α)稳定的k阶线性k步法公式 被引量:7
20
作者 杨大地 刘冬兵 《计算数学》 CSCD 北大核心 2008年第2期143-146,共4页
本文给出了一类与Gear方法类似的k阶线性k步法隐式公式.作者还求出了公式的分数形式的系数,阶数和局部截断误差主项系数,并验证了2-6步公式都具有A(α)稳定的,计算出了它们的幅角α.最后用对比数值实验验证了公式确实是稳定的,并且适合... 本文给出了一类与Gear方法类似的k阶线性k步法隐式公式.作者还求出了公式的分数形式的系数,阶数和局部截断误差主项系数,并验证了2-6步公式都具有A(α)稳定的,计算出了它们的幅角α.最后用对比数值实验验证了公式确实是稳定的,并且适合于求解刚性常微分方程. 展开更多
关键词 线性多步方法 A(α)稳定性 刚性常微分方程 数值实验
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部