This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the mod...This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while展开更多
In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining...In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.展开更多
Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) ...Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.展开更多
文摘This study presents the utility of remote sensing (RS), GIS and field observation data to estimate above ground biomass (AGB) and stem volume over tropical forest environment. Application of those data for the modeling of forest properties is site specific and highly uncertain, thus further study is encouraged. In this study we used 1460 sampling plots collected in 16 transects measuring tree diameter (DBH) and other forest properties which were useful for the biomass assessment. The study was carded out in tropical forest region in East Kalimantan, Indo- nesia. The AGB density was estimated applying an existing DBH - biomass equation. The estimate was superimposed over the modified GIS map of the study area, and the biomass density of each land cover was calculated. The RS approach was performed using a subset of sample data to develop the AGB and stem volume linear equation models. Pearson correlation statistics test was conducted using ETM bands reflectance, vegetation indices, image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. Two linear models were generated from the significant RS data. To analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000 and 2003 were preprocessed, classified using maximum likelihood method, and filtered with the majority analysis. We found 158±16 m^3.ha^-1 of stem volume and 168±15 t.ha^-1 of AGB estimated from RS approach, whereas the field measurement and GIS estimated 157±92 m^3.ha^-1 and 167±94 t.ha^-1 of stem volume and AGB, respectively. The dynamics of biomass abundance from 2000 to 2003 were assessed from multi temporal ETM data and we found a slightly declining trend of total biomass over these periods. Remote sensing approach estimated lower biomass abundance than did the GIS and field measurement data. The earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while
基金the Korea Forest Service for funding this research(Project No.S211316L020130)
文摘In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.
基金supported by the National Natural Science Foundation of China(Grant Nos.41671414,41971380,41331171 and 41171265)the National Key Research and Development Program of China(No.2016YFB0501404)
文摘Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.