期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
一种基于主分量分析的恒星光谱快速分类法 被引量:30
1
作者 覃冬梅 胡占义 赵永恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2003年第1期182-186,共5页
恒星光谱分类是天体光谱自动识别中的重要组成部分。本文主要介绍一种实用的基于主分量分析(PCA)法对恒星光谱进行快速自动的分类方法。该方法在恒星的主分量空间中对样本点进行投影 ,并利用最近邻分类器进行分类 ,获得与恒星MK分类标... 恒星光谱分类是天体光谱自动识别中的重要组成部分。本文主要介绍一种实用的基于主分量分析(PCA)法对恒星光谱进行快速自动的分类方法。该方法在恒星的主分量空间中对样本点进行投影 ,并利用最近邻分类器进行分类 ,获得与恒星MK分类标准的光谱型基本一致的结果。本文的主要工作有 :(1 )利用PCA方法构造恒星光谱的特征矩阵 ,建构恒星的主分量空间 ;(2 )对恒星光谱进行主分量投影 ,对投影点进行光谱型和光度级的分类器设计 ,利用最近邻法分类 ,最后得出恒星的分类树。该分类法速度快 ,分类准确率较高 ,对目前许多大型光谱巡天计划所获得的大量光谱数据的处理有着重要的意义。 展开更多
关键词 恒星 光谱分析 主分量分析 特征矩阵 最近邻法 天体识别 光谱识别
下载PDF
基于多类支持向量机的恒星光谱分类方法 被引量:8
2
作者 张静 刘忠宝 +2 位作者 宋文爱 富丽贞 章永来 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第7期2307-2310,共4页
支持向量机作为一种经典的分类方法被广泛应用于恒星光谱分类领域。该方法在实际应用中取得了较为理想的分类效果,但其面临无法解决多分类问题的挑战。在支持向量机的基础上,提出多类支持向量机,建立基于多类支持向量机的恒星光谱分类... 支持向量机作为一种经典的分类方法被广泛应用于恒星光谱分类领域。该方法在实际应用中取得了较为理想的分类效果,但其面临无法解决多分类问题的挑战。在支持向量机的基础上,提出多类支持向量机,建立基于多类支持向量机的恒星光谱分类模型。该方法的最大优势是经过一次分类过程,可以确定多类样本的类属。SDSS DR8恒星光谱数据上的比较实验表明,本研究所提的方法较之已有多分类方法在分类性能上有一定的提升。 展开更多
关键词 支持向量机 多类支持向量机 恒星光谱 自动分类
下载PDF
基于深度学习的恒星光谱分类 被引量:6
3
作者 何东远 刘伟 +3 位作者 曹硕 耿率博 刘宇婷 姚迦文 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期37-44,共8页
大型巡天项目使得恒星光谱的观测进入大数据时代,实现恒星光谱自动分类是一项重要和具有挑战性的工作.本文采用基于一维的卷积网络算法对斯隆数字巡天(sloan digital sky survey, SDSS)的恒星光谱进行分类.通过卷积神经网络,恒星光谱的... 大型巡天项目使得恒星光谱的观测进入大数据时代,实现恒星光谱自动分类是一项重要和具有挑战性的工作.本文采用基于一维的卷积网络算法对斯隆数字巡天(sloan digital sky survey, SDSS)的恒星光谱进行分类.通过卷积神经网络,恒星光谱的特征被提取出来并用于分类.采用带标签的恒星光谱数据训练一维恒星光谱卷积网络(1-dimension stellar spectra convolutional neural networks, 1-D SSCNN),得到训练好的网络模型,并用其对恒星光谱进行分类测试.本文算法与传统的恒星光谱分类算法支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和人工神经网络(artificial neural network, ANN)进行对比,结果表明,本文算法具有较高的分类精度和鲁棒性,且给出了由深度学习得出的光谱热力图,对研究光谱物理性质具有重要意义. 展开更多
关键词 恒星光谱 一维卷积 分类 热力图
下载PDF
利用融合数据分布特征的模糊双支持向量机对恒星光谱分类 被引量:5
4
作者 刘忠宝 秦振涛 +2 位作者 罗学刚 周方晓 张靖 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第4期1307-1311,共5页
恒星光谱分类是天文学研究的一个热点问题。随着观测光谱数量的急剧增加,传统的人工分类无法满足实际需求,急需利用自动化技术,特别是数据挖掘算法来对恒星光谱进行自动分类。关联规则、神经网络、自组织网络等数据挖掘算法已广泛应用... 恒星光谱分类是天文学研究的一个热点问题。随着观测光谱数量的急剧增加,传统的人工分类无法满足实际需求,急需利用自动化技术,特别是数据挖掘算法来对恒星光谱进行自动分类。关联规则、神经网络、自组织网络等数据挖掘算法已广泛应用于恒星光谱分类。其中,支持向量机(SVM)分类能力突出,被广泛应用于恒星光谱分类。该方法试图在两类样本之间找到一个最优分类面将两类分开。该方法具有较高的时间复杂度,计算效率有限。双支持向量机(TWSVM)的出现有效地解决了SVM面临的效率问题。该方法通过构造两个非平行的分类面将两类分开,每一类靠近某个分类面,而远离另一个分类面。TWSVM的计算效率较之传统SVM提高近4倍,因此,自TWSVM提出后便受到研究人员的持续关注。但上述方法在分类决策时,一方面没有考虑数据的分布特征,另一方面较易受噪声点和奇异点的影响,分类效率难以显著提升。鉴于此,在双支持向量机的基础上,提出融合数据分布特征的模糊双支持向量机(TWSVM-SDP)。该方法引入线性判别分析(LDA)的类间离散度和类内离散度,用以表征光谱数据的分布性状;引入模糊隶属度函数用以降低噪声点和奇异点对分类结果的影响。在SDSS DR8恒星光谱数据集上的比较实验表明,与支持向量机SVM、双支持向量机TWSVM等传统分类方法相比,融合数据分布特征的模糊双支持向量机TWSVM-SDP具有更优的分类能力。该方法亦存在一定的局限性,其中一大难题是其无法处理海量光谱数据。接下来将利用大数据处理技术,来对所提方法在大数据环境下的适应性展开进一步研究。 展开更多
关键词 恒星光谱 分类 数据分布特征 模糊隶属度 双支持向量机
下载PDF
利用带无标签数据的双支持向量机对恒星光谱分类 被引量:2
5
作者 刘忠宝 雷宇飞 +3 位作者 宋文爱 张静 王杰 屠良平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第3期948-952,共5页
恒星光谱分类是天文技术与方法领域一直关注的热点问题之一。随着观测设备持续运行和不断改进,人类获得的光谱数量与日俱增。这些海量光谱为人工处理带来了极大挑战。鉴于此,研究人员开始关注数据挖掘算法,并尝试对这些光谱进行数据挖... 恒星光谱分类是天文技术与方法领域一直关注的热点问题之一。随着观测设备持续运行和不断改进,人类获得的光谱数量与日俱增。这些海量光谱为人工处理带来了极大挑战。鉴于此,研究人员开始关注数据挖掘算法,并尝试对这些光谱进行数据挖掘。近年来,神经网络、自组织映射、关联规则等数据挖掘方法广泛应用于恒星光谱分类。在这些方法中,支持向量机(SVM)以其强大的学习能力和高效的分类性能而备受推崇。SVM的基本思想是试图在两类样本之间找到一个最优分类面将两类分开。SVM在求解时,通过将其最优化问题转化为具有(QP)形式的凸问题,进而得到全局最优解。尽管该方法在实际应用中表现优良,但为了进一步提高其分类能力,有的学者提出双支持向量机(TSVM)。该方法通过构造两个非平行的分类面将两类分开,每一类靠近某个分类面,而远离另一个分类面。TSVM的计算效率较之传统SVM提高近4倍,因此,自TSVM提出后便受到研究人员的持续关注,并出现若干改进算法。在恒星光谱分类中,一般分类算法都是根据历史观测光谱来建立分类模型,其中最关键的是对光谱进行人工标注,这项工作极为繁琐,且容易犯错。如何利用已标记的光谱以及部分无标签的光谱来建立分类模型显得尤为重要。因此,提出带无标签数据的双支持向量机(TSVMUD)用以实现对恒星光谱智能分类的目的。该方法首先将光谱分为训练数据集和测试数据集两部分;然后,在训练集上进行学习,得到分类依据;最后利用分类依据对测试集上的光谱进行验证。继承了双支持向量机的优势,更重要的是,在训练集上学习分类模型过程中,不仅考虑有标记的训练样本,也考虑部分未标记的样本。一方面提高了学习效率,另一方面得到更优的分类模型。在SDSS DR8恒星光谱数据集上的比较实验表明,与支持向� 展开更多
关键词 恒星光谱 智能分类 双支持向量机 无标签数据
下载PDF
一种新的恒星光谱间距离度量方法:残差分布距离
6
作者 刘杰 潘景昌 +2 位作者 罗阿理 韦鹏 刘猛 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第12期3524-3528,共5页
距离度量是光谱巡天数据处理中的一个重要研究内容,其定义了一种不同光谱间的距离计算方法,以此为基础可进行光谱的分类、聚类、参数测量及离群数据挖掘等工作。距离度量方法的好坏在一定程度上影响了分类、聚类、参数测量及离群数据挖... 距离度量是光谱巡天数据处理中的一个重要研究内容,其定义了一种不同光谱间的距离计算方法,以此为基础可进行光谱的分类、聚类、参数测量及离群数据挖掘等工作。距离度量方法的好坏在一定程度上影响了分类、聚类、参数测量及离群数据挖掘的效果及性能,同时随着大规模恒星光谱巡天项目的开展,如何针对恒星光谱定义更为有效的距离度量方法成为其数据处理中一个非常关键的问题。基于此问题,在充分考虑到恒星光谱的特点及其数据特征的基础上,提出一种新的恒星光谱间的距离度量方法:残差分布距离。该距离度量有别于传统计算恒星光谱间距离计算方法,利用该方法计算恒星光谱间的距离时,首先将两条光谱归一化到同一尺度下,然后计算对应波长处的残差,以残差谱分布的标准差作为距离度量。该距离度量方法可用于恒星分类、聚类以及恒星大气物理参数测量等应用中。本文以恒星光谱细分类为例来比较检验该距离度量方法,结果表明该方法定义的距离在分类时能更为有效的刻画不同类别光谱间的差距,可以很好的用于相关应用中。同时还研究了信噪比对该距离度量方法的影响:残差分布距离一定程度上受光谱信噪比影响,信噪比越小,对距离的影响越大;在信噪比大于10之后,残差分布距离对分类的影响很小。 展开更多
关键词 恒星光谱 距离度量 残差分布 恒星分类 恒星聚类 参数测量
下载PDF
基于SSTransformer的恒星亚型光谱分类方法研究
7
作者 范雅雯 刘艳萍 +3 位作者 邱波 姜霞 王林倩 王坤 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第8期2523-2528,共6页
恒星的分类问题一直是天文研究的一大热点,恒星的亚型分类对探究恒星演化、稀有天体识别等具有重大意义。针对LAMOST光谱亚型分类问题设计了SSTransformer(stellar spectrum transformer)分类模型,该模型主要由三部分组成,包括输入模块... 恒星的分类问题一直是天文研究的一大热点,恒星的亚型分类对探究恒星演化、稀有天体识别等具有重大意义。针对LAMOST光谱亚型分类问题设计了SSTransformer(stellar spectrum transformer)分类模型,该模型主要由三部分组成,包括输入模块、嵌入模块、SST编码模块。在输入模块中,将光谱数据进行分块处理,这些块经过线性投射层被映射为向量。在嵌入模块中,为了提取有用的数据特征,将线性投射层的输出加入一个可学习的类别嵌入块,为了保留位置信息,再加入位置嵌入块,之后将这些数据特征向量送入SST编码模块。最后在SST编码模块中,对数据特征进行提取处理,并利用多层感知器结合新特征对恒星光谱进行分类。采用的A、F、G、K、M型恒星光谱数据均来自LAMOST DR8中的一维低分辨率光谱,35256条一维光谱数据用于SSTransformer模型的训练,8815条一维光谱数据用作模型的测试。为了加快模型的收敛速度,对数据采用Z-Score归一化处理。由于是多分类问题,实验采用了准确率、精确率、召回率、F1-Score、Kappa系数五个评价指标。实验结果证明,利用SSTransformer模型可实现对一维恒星光谱数据有效的筛选分类,分类准确率达到98.36%,比支持向量机(support vector machine,SVM)算法、极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法,以及卷积神经网络(convolutional neural networks,CNN)的分类准确率更高。 展开更多
关键词 恒星光谱 自动分类 SSTransformer模型 归一化
下载PDF
基于熵学习机的恒星光谱分类(英文) 被引量:1
8
作者 刘忠宝 任娟娟 +3 位作者 宋文爱 张静 孔啸 富丽贞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第2期660-664,共5页
数据挖掘被广泛应用于恒星光谱分类。为了提高传统光谱分类方法性能,提出熵学习机(Entropybased Learning Machine,ELM)。在该方法中,熵用来刻画分类的不确定性。为了得到理想的分类结果,分类的不确定性应最小,基于此,可得ELM的最优化... 数据挖掘被广泛应用于恒星光谱分类。为了提高传统光谱分类方法性能,提出熵学习机(Entropybased Learning Machine,ELM)。在该方法中,熵用来刻画分类的不确定性。为了得到理想的分类结果,分类的不确定性应最小,基于此,可得ELM的最优化问题。ELM在处理二分类问题和稀有光谱发现等方面具有一定优势。SDSS中K型、F型、G型恒星光谱数据集上的比较实验表明:ELM在进行恒星光谱分类时,其分类性能优于k近邻(k Nearest Neighbor)和支持向量机(Support Vector Machine)等传统分类方法。 展开更多
关键词 数据挖掘 恒星光谱分类 斯隆数字巡天
下载PDF
使用SOFM方法进行恒星光谱自动分类 被引量:3
9
作者 薛建桥 李启斌 赵永恒 《天体物理学报》 CSCD 2000年第4期437-450,共14页
SOFM是人工神经网络的非监督学习算法,可以将数据组织到一个特征图上,而保存 大多数原始数据空间的拓扑特征.使用这种方法进行恒星光谱自动分类,分类结果与哈佛 序列十分相似.SOFM方法应该是进行大数量恒星光谱样本在线分... SOFM是人工神经网络的非监督学习算法,可以将数据组织到一个特征图上,而保存 大多数原始数据空间的拓扑特征.使用这种方法进行恒星光谱自动分类,分类结果与哈佛 序列十分相似.SOFM方法应该是进行大数量恒星光谱样本在线分类的有用方法,它能 够自动执行,因此可用于处理大数量天体光谱. 展开更多
关键词 恒星光谱 光谱分类 数据处理 神经网络 SOFM法
下载PDF
基于FFCNN的二维恒星光谱分类 被引量:1
10
作者 逯亚坤 邱波 +5 位作者 罗阿理 郭小雨 王林倩 曹冠龙 白仲瑞 陈建军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第6期1881-1885,共5页
天体光谱处理中的一项基本任务是对大量的恒星光谱进行自动分类。到目前为止,恒星光谱的分类工作多是基于一维光谱数据。该研究打破传统的天体光谱数据处理流程,提出了基于二维恒星光谱分类的方法。在LAMOST(the large sky area multi-o... 天体光谱处理中的一项基本任务是对大量的恒星光谱进行自动分类。到目前为止,恒星光谱的分类工作多是基于一维光谱数据。该研究打破传统的天体光谱数据处理流程,提出了基于二维恒星光谱分类的方法。在LAMOST(the large sky area multi-object fiber spectroscopic telescope)的数据处理流程中,所有的一维光谱都是由二维光谱抽谱、合并得来。二维光谱是由光谱仪产生的图像,包括蓝端图像和红端图像。基于LAMOST二维光谱数据,提出了特征融合卷积神经网络(FFCNN)分类模型,用于二维恒星光谱的分类。该模型是一个有监督的算法,通过两个CNN模型分别提取蓝端图像和红端图像的特征,然后将二者进行融合得到新的特征,再利用CNN对新特征进行分类。所使用的数据全部来源于LAMOST,我们在LMOST DR7中随机选择了一批源,然后获得了它们的二维光谱。一共有14840根F,G和K型恒星的二维光谱用于FFCNN模型的训练,其中包括7420根蓝端光谱和7420根红端光谱。由于三类恒星光谱的数量并不均衡,在训练的过程中分别为每类恒星光谱设置了不同权重,防止模型出现分类失衡现象。同时,为了加快模型收敛,对二维光谱数据采用Z-score归一化处理。此外,为了充分利用所有样本,提高模型的可靠度,采用五折交叉验证的方法验证模型。3710根二维光谱用作测试集,使用准确率、精确率、召回率和F1-score来对FFCNN模型的性能进行评价。实验结果显示,F,G和K型恒星的精确率分别达到87.6%,79.2%和88.5%,而且它们超过了一维光谱分类的结果。实验结果证明基于FFCNN的二维恒星光谱分类是一种有效的方法,它也为恒星光谱的处理提供了新的思路和方法。 展开更多
关键词 二维恒星光谱 光谱分类 FFCNN模型 归一化 交叉验证
下载PDF
基于非参数回归与最近邻方法的恒星光谱自动分类 被引量:1
11
作者 张健楠 赵永恒 刘蓉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第12期3424-3428,共5页
恒星光谱数据的自动识别与分类是现代巡天望远镜所产生的海量光谱数据处理的一项重要研究内容。针对流量未定标的低分辨率恒星光谱设计了一种有效的自动分类方案,实现恒星光谱的MK分类:光谱型及其次型分类,光度型分类。该方案由三部分实... 恒星光谱数据的自动识别与分类是现代巡天望远镜所产生的海量光谱数据处理的一项重要研究内容。针对流量未定标的低分辨率恒星光谱设计了一种有效的自动分类方案,实现恒星光谱的MK分类:光谱型及其次型分类,光度型分类。该方案由三部分实现:(1)连续谱归一化:基于小波技术提取低频信号逼近连续谱的方法;(2)七种光谱型及其次型的分类通过非参数回归方法实现。(3)光度型分类通过基于最近邻的χ2方法实现。实验结果表明该方案能够有效实现恒星光谱的MK分类,光谱型及其次型的分类精度为3.2个光谱次型,Ⅰ-Ⅴ光度型的正确识别率为60%,次优统计率为78%。该方案训练速度快,方法实现容易,适用于海量恒星光谱自动分类处理系统。 展开更多
关键词 恒星光谱分类 连续谱归一化 非参数回归 最近邻方法 光度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部