The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for...The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.展开更多
This paper is concerned with the system of Euler-Poisson equations as a model to describe the motion of the self-induced gravitational gaseous stars. When ~ 〈 7 〈 2, under the weak smoothness of entropy function, we...This paper is concerned with the system of Euler-Poisson equations as a model to describe the motion of the self-induced gravitational gaseous stars. When ~ 〈 7 〈 2, under the weak smoothness of entropy function, we find a sufficient condition to guarantee the existence of stationary solutions for some velocity fields and entropy function that solve the conservation of mass and energy.展开更多
In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLS equation were explicitly given by the elliptic functions. Then a family of exact solutions ...In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLS equation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these stationary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations.展开更多
A survey of the main results of algorithmic studies of Markov processes and related stochastic models is shown. It consists of stationary solutions, transient solutions, first passage times, and multidimensional denum...A survey of the main results of algorithmic studies of Markov processes and related stochastic models is shown. It consists of stationary solutions, transient solutions, first passage times, and multidimensional denumerable state Markov processes. In conclusion, some remarks on further works are presented.展开更多
The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quan...The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier-Stokes equations, when the nonzero boundary value u0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier-Stokes equations.展开更多
A reaction-diffusion type mathematical model for growth of corals in a tank is considered. In this paper, we study stationary problem of the model subject to the homogeneous Neumann boundary conditions. We derive some...A reaction-diffusion type mathematical model for growth of corals in a tank is considered. In this paper, we study stationary problem of the model subject to the homogeneous Neumann boundary conditions. We derive some existence results of the non-constant solutions of the stationary problem based on Priori estimations and Topological Degree theory. The existence of non-constant stationary solutions implies the existence of spatially variant time invariant solutions for the model.展开更多
This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general...This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.展开更多
基金supported by NSFC (10631030, 11071094)the fund of CCNU for Ph.D students (2009021)
文摘The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.
基金supported by the Fundamental Research Funds for the Central Universities(2011-1a-021)
文摘This paper is concerned with the system of Euler-Poisson equations as a model to describe the motion of the self-induced gravitational gaseous stars. When ~ 〈 7 〈 2, under the weak smoothness of entropy function, we find a sufficient condition to guarantee the existence of stationary solutions for some velocity fields and entropy function that solve the conservation of mass and energy.
文摘In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLS equation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these stationary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations.
文摘A survey of the main results of algorithmic studies of Markov processes and related stochastic models is shown. It consists of stationary solutions, transient solutions, first passage times, and multidimensional denumerable state Markov processes. In conclusion, some remarks on further works are presented.
基金Supported by the National Natural Science Foundation of China(Grant No.U1430103)
文摘The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier-Stokes equations, when the nonzero boundary value u0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier-Stokes equations.
文摘A reaction-diffusion type mathematical model for growth of corals in a tank is considered. In this paper, we study stationary problem of the model subject to the homogeneous Neumann boundary conditions. We derive some existence results of the non-constant solutions of the stationary problem based on Priori estimations and Topological Degree theory. The existence of non-constant stationary solutions implies the existence of spatially variant time invariant solutions for the model.
基金supported by the National Natural Science Foundation of China (Grant No. 1057411)the Foundation for Researching Group by Beijing Normal Universitythe Foundation for Outstanding Doctoral Dissertation by Beijing Normal University
文摘This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.
基金Supported by the Vital Science Research Foundation of Henan Province Education Department(No.12A110024)the Youth Natural Science Foundation of Zhengzhou Institute of Aeronautical Industry Management(No.2013111001,No.2014113002)+2 种基金the Natural Science Foundation of Henan Province Science and Technology Department(No.132300410373)the Aeronautical Science Foundation of China(No.2013ZD55006)the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(No.2013GGJS-142)