期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Stacked ConvLSTM的时间序列森林火烧迹地检测
被引量:
2
1
作者
李淑君
郑柯
+2 位作者
唐娉
霍连志
袁媛
《遥感学报》
EI
CSCD
北大核心
2022年第10期1976-1987,共12页
确定森林火烧迹地的准确时间点以及空间范围对于森林的受损评价、管理、碳核算以及森林恢复的管理有重要意义。由于森林火烧迹地在空间分布上具有一定的连续性,现有的森林火烧迹地提取方法大都采用先分类再后处理的两步处理策略来抑制...
确定森林火烧迹地的准确时间点以及空间范围对于森林的受损评价、管理、碳核算以及森林恢复的管理有重要意义。由于森林火烧迹地在空间分布上具有一定的连续性,现有的森林火烧迹地提取方法大都采用先分类再后处理的两步处理策略来抑制虚警像素的影响。本文提出将时空检测方法Stacked ConvLSTM用于时间序列森林火烧迹地的检测,在保持结果具有较好空间连续性的基础上避免了具有主观性的后处理操作,实现端到端提取森林火烧迹地信息,提升了森林火烧迹地的提取精度。采用MODIS时间序列数据,基于2001年—2008年以及2001年—2016年的黑龙江沾河林业局伊南河林场和内蒙古自治区毕拉河林业局北大河林场两个区域的历史时间序列,分别对这两个区域2009年以及2017年发生的特大火灾区域进行火烧迹地检测,利用Stacked ConvLSTM、Stacked LSTM以及bfast算法在两个区域的MODIS时间序列中提取森林火烧迹地,并将火烧迹地检测结果与ESA发布的Fire_CCI 5.1火烧迹地产品进行对比分析。结果表明:首先,从目视效果来看,在研究区域Ⅰ,Stacked ConvLSTM检测的结果比Stacked LSTM和bfast算法错误检测点少,并且在空间分布也保持较高连续性;在研究区域Ⅱ,Stacked ConvLSTM检测到了较完整的火烧迹地区域。其次,在定量的精度评价指标上,在研究区域Ⅰ,Stacked ConvLSTM的精确度比Stacked LSTM和bfast算法分别高出0.120和0.405,并且召回率、准确度和F1-score也更高,Fire_CCI 5.1召回率虽更高,由于错检区域较大,其他精度指标远低于Stacked ConvLSTM;在研究区域Ⅱ,Stacked ConvLSTM精确度达0.924,召回率、准确度和F1-score相比Stacked LSTM和bfast算法以及Fire_CCI 5.1更高。
展开更多
关键词
stacked
convlstm
时间序列
时空预测
火烧迹地
原文传递
题名
基于Stacked ConvLSTM的时间序列森林火烧迹地检测
被引量:
2
1
作者
李淑君
郑柯
唐娉
霍连志
袁媛
机构
中国科学院空天信息创新研究院
中国科学院大学
南京邮电大学
出处
《遥感学报》
EI
CSCD
北大核心
2022年第10期1976-1987,共12页
基金
国家自然科学基金(编号:41971396,41901356)
中国科学院(A类)战略性先导科技专项(编号:XDA19080301)。
文摘
确定森林火烧迹地的准确时间点以及空间范围对于森林的受损评价、管理、碳核算以及森林恢复的管理有重要意义。由于森林火烧迹地在空间分布上具有一定的连续性,现有的森林火烧迹地提取方法大都采用先分类再后处理的两步处理策略来抑制虚警像素的影响。本文提出将时空检测方法Stacked ConvLSTM用于时间序列森林火烧迹地的检测,在保持结果具有较好空间连续性的基础上避免了具有主观性的后处理操作,实现端到端提取森林火烧迹地信息,提升了森林火烧迹地的提取精度。采用MODIS时间序列数据,基于2001年—2008年以及2001年—2016年的黑龙江沾河林业局伊南河林场和内蒙古自治区毕拉河林业局北大河林场两个区域的历史时间序列,分别对这两个区域2009年以及2017年发生的特大火灾区域进行火烧迹地检测,利用Stacked ConvLSTM、Stacked LSTM以及bfast算法在两个区域的MODIS时间序列中提取森林火烧迹地,并将火烧迹地检测结果与ESA发布的Fire_CCI 5.1火烧迹地产品进行对比分析。结果表明:首先,从目视效果来看,在研究区域Ⅰ,Stacked ConvLSTM检测的结果比Stacked LSTM和bfast算法错误检测点少,并且在空间分布也保持较高连续性;在研究区域Ⅱ,Stacked ConvLSTM检测到了较完整的火烧迹地区域。其次,在定量的精度评价指标上,在研究区域Ⅰ,Stacked ConvLSTM的精确度比Stacked LSTM和bfast算法分别高出0.120和0.405,并且召回率、准确度和F1-score也更高,Fire_CCI 5.1召回率虽更高,由于错检区域较大,其他精度指标远低于Stacked ConvLSTM;在研究区域Ⅱ,Stacked ConvLSTM精确度达0.924,召回率、准确度和F1-score相比Stacked LSTM和bfast算法以及Fire_CCI 5.1更高。
关键词
stacked
convlstm
时间序列
时空预测
火烧迹地
Keywords
stacked
convlstm
time
series
spatiotemporal
prediction
forest
burned
area
分类号
S762.3 [农业科学—森林保护学]
O211.61 [农业科学—林学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Stacked ConvLSTM的时间序列森林火烧迹地检测
李淑君
郑柯
唐娉
霍连志
袁媛
《遥感学报》
EI
CSCD
北大核心
2022
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部