Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are stu...Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,展开更多
The stiffness required for the normal operation of membrane roof comes from the application of pre-tension. When the pre-tension is too small, it is easy to cause instability under the action of wind load, which leads...The stiffness required for the normal operation of membrane roof comes from the application of pre-tension. When the pre-tension is too small, it is easy to cause instability under the action of wind load, which leads to excessive deformation of the roof and local or overall damage. In order to ensure that the membrane roof is always in normal use state in the airflow field, this paper takes the membrane pretension as the control parameter to study the value of safety pretension of closed membrane roof. According to the theory of large deflection of membrane and Galerkin method, the nonlinear vibration differential equation of membrane roof under static wind is established, and the critical state of safe working of membrane roof is determined by judging the stability of the solution of the equation, and the expression of critical wind speed is obtained. By establishing the inequality relationship between local design wind speed and critical wind speed, the safety pretension limit of membrane roof under specific site can be obtained. The research shows that the safety pretension limits of closed membrane roofs are different in different areas under different design return periods. In addition, the value of safety pretension is related to the film geometry.展开更多
Present support theories contain a number of shortcomings in the designation of fractured roof bolt parameters of rectangular or trapezoidal coal roadways.Roof fall accidents occur easily in this kind of roadway.Based...Present support theories contain a number of shortcomings in the designation of fractured roof bolt parameters of rectangular or trapezoidal coal roadways.Roof fall accidents occur easily in this kind of roadway.Based on the Bossinesq equations and the Mohr strength theory,we propose a theory of an anchored cluster structure for fractured roofs and have investigated the formation of such an anchored cluster structure,its self stability mechanism and mechanical properties.The results show that an anchor and the surrounding fractured rock can form a string-like supporting structure,referred to as the structure of an anchored cluster for rational bolt parameters.Not only can the structure maintain its own stability,but as well undertake the load of the overlying strata.The designated support parameters,based on anchored cluster theory can overcome the shortcomings of other support theories applied to a fractured roof of rectangular roadways or could not be calculated.Our anchored cluster theory can provide a theoretical basis for the design of support for rectangular fractured roofs.Furthermore,the theory will help to reduce the probability of roof fall accidents caused by local fractured rock blocks,which can destroy a supporting structure.展开更多
基金provided by the National Natural Science Foundation of China (Nos. 51504259 and 51234005)the Fundamental Research Funds for the Central Universities (No. 2010QZ06)
文摘Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,
文摘The stiffness required for the normal operation of membrane roof comes from the application of pre-tension. When the pre-tension is too small, it is easy to cause instability under the action of wind load, which leads to excessive deformation of the roof and local or overall damage. In order to ensure that the membrane roof is always in normal use state in the airflow field, this paper takes the membrane pretension as the control parameter to study the value of safety pretension of closed membrane roof. According to the theory of large deflection of membrane and Galerkin method, the nonlinear vibration differential equation of membrane roof under static wind is established, and the critical state of safe working of membrane roof is determined by judging the stability of the solution of the equation, and the expression of critical wind speed is obtained. By establishing the inequality relationship between local design wind speed and critical wind speed, the safety pretension limit of membrane roof under specific site can be obtained. The research shows that the safety pretension limits of closed membrane roofs are different in different areas under different design return periods. In addition, the value of safety pretension is related to the film geometry.
基金provided by the National Natural Science Foundation of China (No.50774077)the Ministry of Education for New Century Excellent Talent Support Program of China (No.NCET-06-0475)the Science Foundation for Youth Scholar of China University of Mining and Technology (Beijing) (No.2009QZ01)
文摘Present support theories contain a number of shortcomings in the designation of fractured roof bolt parameters of rectangular or trapezoidal coal roadways.Roof fall accidents occur easily in this kind of roadway.Based on the Bossinesq equations and the Mohr strength theory,we propose a theory of an anchored cluster structure for fractured roofs and have investigated the formation of such an anchored cluster structure,its self stability mechanism and mechanical properties.The results show that an anchor and the surrounding fractured rock can form a string-like supporting structure,referred to as the structure of an anchored cluster for rational bolt parameters.Not only can the structure maintain its own stability,but as well undertake the load of the overlying strata.The designated support parameters,based on anchored cluster theory can overcome the shortcomings of other support theories applied to a fractured roof of rectangular roadways or could not be calculated.Our anchored cluster theory can provide a theoretical basis for the design of support for rectangular fractured roofs.Furthermore,the theory will help to reduce the probability of roof fall accidents caused by local fractured rock blocks,which can destroy a supporting structure.