We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS...We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.展开更多
The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis.The spontaneous polarization property can induce the formation of built-in electric field,whic...The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis.The spontaneous polarization property can induce the formation of built-in electric field,which can improve the separation of photoelectrons and holes to affect photocatalytic performance.The internal electric field induced by spontaneous polarization can be influenced by multiple factors such as the morphology,the concentration of defect,the type of doped heteroatoms,as well as the composition of heterostructures.Besides,the preparation method,pretreating temperature,the strength of prepolarized external electric field of ferroelectric-based photocatalysts as well as the strength of external mechanical force or external magnetic field in photocatalytic reactions can influence the photocatalytic effectivity via influencing spontaneous polarization-induced internal electric field.Thus,it is urgently to unveil the mystery of structure-activity relationships for ferroelectric materials-based photocatalysts,which is usually uncertain.With this in mind,this review was provided for the role of various complex influencing factors on ferroelectric materials-based photocatalysis based on the latest advancement in the fields of new energy development,environmental remediation.In the beginning,the basic structure and properties of ferroelectric material are given.Then,popular synthesis methods of ferroelectric-based photocatalysts are summarized.After that,two main mechanisms of ferroelectric photocatalysis are discussed.The research progress of ferroelectric photocatalysis is then given emphatically according to the classification of photocatalytic reactions.Finally,the problems existing nowadays and the challenges facing in the future on the application of ferroelectric materials-based photocatalysts are outlined in the summary and outlook section.展开更多
In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials...In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials.This theory is inspired by the physical idea that once completely relaxed,an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field.Under external loadings,the surface Helmholtz free energy density is identified as the characteristic function of such surfaces,with the in-plane strain tensor of surface and the surface free charge density as the independent state variables.New boundary conditions governing the surface piezoelectricity are derived through the variational method.The resulting concepts of charge-dependent surface stress and deformationdependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces.As an illustrative example,an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated.The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.展开更多
Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound e...Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF, and the structure parameters of the QD system.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572155, 10172030 and 50232030).
文摘We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.
基金supported by the National Natural Science Foundation of China(Nos.21927811,22002076,22074082,22106093,22276115)as well as the Excellent Youth Overseas Project of Shandong Province(No.2023HWYQ-075).
文摘The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis.The spontaneous polarization property can induce the formation of built-in electric field,which can improve the separation of photoelectrons and holes to affect photocatalytic performance.The internal electric field induced by spontaneous polarization can be influenced by multiple factors such as the morphology,the concentration of defect,the type of doped heteroatoms,as well as the composition of heterostructures.Besides,the preparation method,pretreating temperature,the strength of prepolarized external electric field of ferroelectric-based photocatalysts as well as the strength of external mechanical force or external magnetic field in photocatalytic reactions can influence the photocatalytic effectivity via influencing spontaneous polarization-induced internal electric field.Thus,it is urgently to unveil the mystery of structure-activity relationships for ferroelectric materials-based photocatalysts,which is usually uncertain.With this in mind,this review was provided for the role of various complex influencing factors on ferroelectric materials-based photocatalysis based on the latest advancement in the fields of new energy development,environmental remediation.In the beginning,the basic structure and properties of ferroelectric material are given.Then,popular synthesis methods of ferroelectric-based photocatalysts are summarized.After that,two main mechanisms of ferroelectric photocatalysis are discussed.The research progress of ferroelectric photocatalysis is then given emphatically according to the classification of photocatalytic reactions.Finally,the problems existing nowadays and the challenges facing in the future on the application of ferroelectric materials-based photocatalysts are outlined in the summary and outlook section.
基金supports from the National Natural Science Foundation of China(Grant Nos. 10772093,10972121,and 10732050)the National Basic Research Program of China(Grant Nos. 2007CB936803 and 2010CB-631005)
文摘In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials.This theory is inspired by the physical idea that once completely relaxed,an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field.Under external loadings,the surface Helmholtz free energy density is identified as the characteristic function of such surfaces,with the in-plane strain tensor of surface and the surface free charge density as the independent state variables.New boundary conditions governing the surface piezoelectricity are derived through the variational method.The resulting concepts of charge-dependent surface stress and deformationdependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces.As an illustrative example,an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated.The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60276004 and 60390073.
文摘Considering the three-dimensional confinement of the electrons and holes and the strong built-in electric field (BEF) in the wurtzite InGaN strained coupled quantum dots (QDs), the positively charged donor bound exciton states and interband optical transitions are investigated theoretically by means of a variational method. Our calculations indicate that the emission wavelengths sensitively depend on the donor position, the strong BEF, and the structure parameters of the QD system.