Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catal...Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.展开更多
Surface treatment is an effective method to improve the photoelectrochemical(PEC) performance of photoelectrodes. Herein, we introduced a novel strategy of surface sulfurization to modify hematite(a-Fe2 O3)nanorods gr...Surface treatment is an effective method to improve the photoelectrochemical(PEC) performance of photoelectrodes. Herein, we introduced a novel strategy of surface sulfurization to modify hematite(a-Fe2 O3)nanorods grown in an aqueous solution, which triggered encouraging improvement in PEC performances.In comparison to the solution-grown pristine a-Fe2 O3 nanorod photoanode that is PEC inefficient and always needs high temperature(>600 °C) activation, the surface sulfurized a-Fe2 O3 nanorods show photocurrent density increased by orders of magnitude, reaching 0.46 mA cmà2 at 1.23 V vs. RHE(reversible hydrogen electrode) under simulated solar illumination. This improvement in PEC performances should be attributed to the synergy of the increased carrier density, the reduced surface charge carrier recombination and the accelerated water oxidation kinetics at the a-Fe2 O3/electrolyte interface, as induced by the incorporation of S ions and the formation of multi-state S species(Fe-Sx-Oy) at the surface of a-Fe2 O3 nanorods. This study paves a new and facile approach to activate a-Fe2 O3 and even other metal oxides as photoelectrodes for improved PEC water splitting performances, by engineering the surface structure to relieve the bottlenecks of charge transfer dynamics and redox reaction kinetics at the electrode/electrolyte interface.展开更多
We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By u...We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.展开更多
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp...In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.展开更多
Bismuth vanadate(BiVO_(4))is a promising photoanode material for efficient photoelectrochemical(PEC)water splitting,whereas its performance is inhibited by detrimental surface states.To solve the problem,herein,a low-...Bismuth vanadate(BiVO_(4))is a promising photoanode material for efficient photoelectrochemical(PEC)water splitting,whereas its performance is inhibited by detrimental surface states.To solve the problem,herein,a low-cost organic molecule 1,3,5-benzenetricarboxylic acid(BTC)is selected for surface passivation of BiVO_(4) photoanodes(BVOs),which also provides bonding sites for Co^(2+)to anchor,resulting in a Co-BTC-BVO photoanode.Owing to its strong coordination with metal ions,BTC not only passivates surface states of BVO,but also provides bonding between BVO and catalytic active sites(Co^(2+))to form a molecular cocatalyst.Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer.The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm^(2) at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.22 VRHE under AM 1.5 G illumination,which ranks among the best photoanodes coupled with Co-based cocatalysts.This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.展开更多
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten...Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.展开更多
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How...Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.展开更多
Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation(LPO) and shape-preferred...Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation(LPO) and shape-preferred orientation(SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shearwave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.展开更多
Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced c...Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.展开更多
Photoelectrochemical devices have been developed to enable the conversion of solar energy.However,their commercial potential is restricted by the limited stability of the materials employed.To enhance the stability of...Photoelectrochemical devices have been developed to enable the conversion of solar energy.However,their commercial potential is restricted by the limited stability of the materials employed.To enhance the stability of photocathode and its solar water splitting performance,a P-Si/TiO_(2)/HfO_(2)/MoS_(2)/Pt composite photocathode is developed in this work.The novel TiO_(2)/HfO_(2)/MoS_(2) serial nanostructure provides excellent stability of the photocathode,and optimizes the interface energy barrier to further facilitate the transfer process of photogenerated carriers within the photocathode.The best P-Si/TiO_(2)/HfO_(2)/MoS_(2)/Pt photocathode demonstrates an initial potential of 0.5 V(vs.RHE)and a photocurrent density of-29 mA/cm^(2) at 0 V(vs.RHE).Through intensity modulated photocurrent spectroscopy and photoluminescence test,it is known that the enhanced water splitting performance is attributed to the optimized carrier transfer property.These findings provide a feasible strategy for the stability and photon quantum efficiency enhancement of silicon-based photocathode devices.展开更多
The effectiveness of photoelectrochemical(PEC)water splitting is significantly restricted by insufficient light harvesting,rapid charge recombination,and slow water reduction kinetics.Since the presence of amorphous p...The effectiveness of photoelectrochemical(PEC)water splitting is significantly restricted by insufficient light harvesting,rapid charge recombination,and slow water reduction kinetics.Since the presence of amorphous phases in the interfaces hinders the overcome of these inherent limitations,a photoelectrode must be built strategically.Herein,we artificially controlled the crystallographic orientation of indium tin oxide(ITO)to determine the orientation with the smallest lattice mismatch at the Cu_(2)O interface,thus significantly reducing the amorphous phase in the early stage of electrodeposition nucleation.The[222]/[400]mixed orientation ITO primarily exposed the{400}surface planes and accelerated charge transfer by forming an optimal interface with preferentially grown(111)oriented Cu_(2)O and minimized amorphous region.In addition,the ITO surface energy was calculated using density functional theory to theoretically verify which plane is more active for growing the photoactivation layer.The rationally designed ITO/Cu_(2)O/Al-dope Zn O/TiO_(2)/Rh-P device,with each layer serving a specific purpose,achieved a photocurrent density of 8.23 mA cm^(-2)at 0 VRHEunder AM 1.5 G illumination,providing a standard method for effective solar-to-hydrogen conversion photocathodes.展开更多
Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) a...Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.展开更多
Intelligent reflecting surface(IRS)has been widely regarded as a promising technology for configuring wireless propagation environments.In this paper,we utilize IRS to assist transmission of a secondary user(SU)in a c...Intelligent reflecting surface(IRS)has been widely regarded as a promising technology for configuring wireless propagation environments.In this paper,we utilize IRS to assist transmission of a secondary user(SU)in a cognitive radio-inspired rate-splitting multiple access(CR-RSMA)system in which a primary user's(PU's)quality of service(QoS)requirements must be guaranteed.Without introducing intolerable interference to deteriorate the PU's outage performance,the SU conducts rate-splitting to transmit its signal to the base-station through the direct link and IRS reflecting channels.For the IRS-assisted CR-RSMA(IRS-CR-RSMA)scheme,we derive the optimal transmit power allocation,target rate allocation,and successive interference cancellation decoding order to enhance the outage performance of the SU.The closed-form expression for the SU's outage probability achieved by the IRS-CR-RSMA scheme is derived.Various simulation results are presented to clarify the enhanced outage performance achieved by the proposed IRS-CR-RSMA scheme over the CR-RSMA scheme.展开更多
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金support of this research by the National Natural Science Foundation of China(Nos.U20A20250 and 22179034)the Natural Science Foundation of Heilongjiang Province(No.ZD2023B002).
文摘Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.
基金financially supported by the National Natural Science Foundation of China (21875183, 51672210 and 51888103)the National Program for Support of Top-notch Young Professionalsthe ‘‘Fundamental Research Funds for the Central Universities”
文摘Surface treatment is an effective method to improve the photoelectrochemical(PEC) performance of photoelectrodes. Herein, we introduced a novel strategy of surface sulfurization to modify hematite(a-Fe2 O3)nanorods grown in an aqueous solution, which triggered encouraging improvement in PEC performances.In comparison to the solution-grown pristine a-Fe2 O3 nanorod photoanode that is PEC inefficient and always needs high temperature(>600 °C) activation, the surface sulfurized a-Fe2 O3 nanorods show photocurrent density increased by orders of magnitude, reaching 0.46 mA cmà2 at 1.23 V vs. RHE(reversible hydrogen electrode) under simulated solar illumination. This improvement in PEC performances should be attributed to the synergy of the increased carrier density, the reduced surface charge carrier recombination and the accelerated water oxidation kinetics at the a-Fe2 O3/electrolyte interface, as induced by the incorporation of S ions and the formation of multi-state S species(Fe-Sx-Oy) at the surface of a-Fe2 O3 nanorods. This study paves a new and facile approach to activate a-Fe2 O3 and even other metal oxides as photoelectrodes for improved PEC water splitting performances, by engineering the surface structure to relieve the bottlenecks of charge transfer dynamics and redox reaction kinetics at the electrode/electrolyte interface.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403803)H.M.is supported by the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China(Grant No.22XNH099)+7 种基金The results of DFT calculations described in this paper are supported by HPC Cluster of ITP-CAS.M.L.is supported by the National Natural Science Foundation of China(Grant No.12204536)the Fundamental Research Funds for the Central Universities,and the Research Funds of People’s Public Security University of China(PPSUC)(Grant No.2023JKF02ZK09)T.L.X.is supported by the National Key R&D Program of China(Grant No.2019YFA0308602)the National Natural Science Foundation of China(Grant Nos.12074425 and 11874422)Y.Y.W.is supported by the National Natural Science Foundation of China(Grant No.12104011)H.Y.L.is supported by the National Natural Science Foundation of China(Grant No.12074213)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
文摘We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.
基金supported by the National Natural Science Foundation of China(52174071,U1903216,52004052)the National Key R&D Program of China(2022YFC2903903).
文摘In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.
基金support from the National Natural Science Foundation of China(No.51672173,U1733130)Shanghai Science and Technology Committee(Nos.21ZR1435700,18520744700, 18JC1410500)Shanghai Jiao Tong University Medical Engineering Cross Research Program(No.YG2023ZD18).
文摘Bismuth vanadate(BiVO_(4))is a promising photoanode material for efficient photoelectrochemical(PEC)water splitting,whereas its performance is inhibited by detrimental surface states.To solve the problem,herein,a low-cost organic molecule 1,3,5-benzenetricarboxylic acid(BTC)is selected for surface passivation of BiVO_(4) photoanodes(BVOs),which also provides bonding sites for Co^(2+)to anchor,resulting in a Co-BTC-BVO photoanode.Owing to its strong coordination with metal ions,BTC not only passivates surface states of BVO,but also provides bonding between BVO and catalytic active sites(Co^(2+))to form a molecular cocatalyst.Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer.The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm^(2) at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.22 VRHE under AM 1.5 G illumination,which ranks among the best photoanodes coupled with Co-based cocatalysts.This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.
基金supported by The Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (No. 2023VCB0014)The National Natural Science Foundation of China (No. 52203284)Shenzhen Science and Technology Program (Nos. GJHZ20220913143801003 and RCBS20221008093057026)
文摘Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.
基金supported by the National Natural Science Foundation of China(21872104,21501131,21978216 and 22272082)the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the Analytical&Testing Center of Tiangong University for PL work。
文摘Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.
基金supported by State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences(SKL-202204 and SKL-202305)the National Natural Science Foundation of China (42274131 and 41774111)。
文摘Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation(LPO) and shape-preferred orientation(SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shearwave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.
基金supported by the National Natural Science Foundation of China(22225604,22076082,22176140)the Frontiers Science Center for New Organic Matter(63181206)Haihe Laboratory of Sustainable Chemical Transformations。
文摘Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.
基金supported by the Key projects of intergovernmental international cooperation in key R&D programs of the Ministry of science and technology of China(No.2021YFE0115800)the National Science Funding Committee of China(No.U20A20250).
文摘Photoelectrochemical devices have been developed to enable the conversion of solar energy.However,their commercial potential is restricted by the limited stability of the materials employed.To enhance the stability of photocathode and its solar water splitting performance,a P-Si/TiO_(2)/HfO_(2)/MoS_(2)/Pt composite photocathode is developed in this work.The novel TiO_(2)/HfO_(2)/MoS_(2) serial nanostructure provides excellent stability of the photocathode,and optimizes the interface energy barrier to further facilitate the transfer process of photogenerated carriers within the photocathode.The best P-Si/TiO_(2)/HfO_(2)/MoS_(2)/Pt photocathode demonstrates an initial potential of 0.5 V(vs.RHE)and a photocurrent density of-29 mA/cm^(2) at 0 V(vs.RHE).Through intensity modulated photocurrent spectroscopy and photoluminescence test,it is known that the enhanced water splitting performance is attributed to the optimized carrier transfer property.These findings provide a feasible strategy for the stability and photon quantum efficiency enhancement of silicon-based photocathode devices.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A2C3011870,2022R1A6A3A13071182)supported by the Global Research and Development Center Program(2018K1A4A3A01064272)through the NRF funded by the Korea government(MSIT)。
文摘The effectiveness of photoelectrochemical(PEC)water splitting is significantly restricted by insufficient light harvesting,rapid charge recombination,and slow water reduction kinetics.Since the presence of amorphous phases in the interfaces hinders the overcome of these inherent limitations,a photoelectrode must be built strategically.Herein,we artificially controlled the crystallographic orientation of indium tin oxide(ITO)to determine the orientation with the smallest lattice mismatch at the Cu_(2)O interface,thus significantly reducing the amorphous phase in the early stage of electrodeposition nucleation.The[222]/[400]mixed orientation ITO primarily exposed the{400}surface planes and accelerated charge transfer by forming an optimal interface with preferentially grown(111)oriented Cu_(2)O and minimized amorphous region.In addition,the ITO surface energy was calculated using density functional theory to theoretically verify which plane is more active for growing the photoactivation layer.The rationally designed ITO/Cu_(2)O/Al-dope Zn O/TiO_(2)/Rh-P device,with each layer serving a specific purpose,achieved a photocurrent density of 8.23 mA cm^(-2)at 0 VRHEunder AM 1.5 G illumination,providing a standard method for effective solar-to-hydrogen conversion photocathodes.
基金the National Natural Science Foundation of China(21421001,21573115,21875118)the Natural Science Foundation of Tianjin(17JCYBJC17100,19JCZDJC37700)。
文摘Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.
基金supported in part by National Natural Science Foundation of China under Grant 62071202in part by Shandong Provincial Natural Science Foundation under Grants ZR2020MF009,ZR2020MF075in part by Shandong Key Laboratory of Intelligent Buildings Technology undert Grant SDIBT202004.
文摘Intelligent reflecting surface(IRS)has been widely regarded as a promising technology for configuring wireless propagation environments.In this paper,we utilize IRS to assist transmission of a secondary user(SU)in a cognitive radio-inspired rate-splitting multiple access(CR-RSMA)system in which a primary user's(PU's)quality of service(QoS)requirements must be guaranteed.Without introducing intolerable interference to deteriorate the PU's outage performance,the SU conducts rate-splitting to transmit its signal to the base-station through the direct link and IRS reflecting channels.For the IRS-assisted CR-RSMA(IRS-CR-RSMA)scheme,we derive the optimal transmit power allocation,target rate allocation,and successive interference cancellation decoding order to enhance the outage performance of the SU.The closed-form expression for the SU's outage probability achieved by the IRS-CR-RSMA scheme is derived.Various simulation results are presented to clarify the enhanced outage performance achieved by the proposed IRS-CR-RSMA scheme over the CR-RSMA scheme.