An explicit, exact approach is proposed to obtain multi-axial elastic potentials for isotropic rubber-like materials undergoing large incompressible deformations. By means of two direct, explicit procedures, this appr...An explicit, exact approach is proposed to obtain multi-axial elastic potentials for isotropic rubber-like materials undergoing large incompressible deformations. By means of two direct, explicit procedures, this approach reduces the problem of determining multi-axial poten- tials to that of determining one-dimensional elastic potentials. To this end, two one-dimensional potentials for uniaxial case and simple shear case are respectively determined via spline inter- polation and, then, the two potentials are extended to generate a multi-axial elastic potential using a novel method based on certain logarithmic invariants. Eventually, each of the multi-axial potentials will exactly match the finite strain data from four benchmark tests.展开更多
The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the ...The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the constraints of the foot motion parameters which include obstacle dimensions and the distance of obstacle from the humanoid robot is formulated. By varying the values of the constraint parameters, different types of foot motion for different obstacles can be produced. In this method, first the foot trajectory is generated, and then the waist trajectory is computed by using cubic spline interpolation without first calculating the zero moment point (ZMP) trajectory . The dynamic stability during the execution of stepping over and stepping on/off trajectories are ensured by incorporating the ZMP criterion. The effectiveness of the proposed method is confirmed by simulations and experiments on humanoid robot BHR-2.展开更多
The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new ...The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new method to calibrate mirror map on ultraprecise movement stage (UPMS) with nanopositioning and to make a real-time compensation for the mirror surface error by using mirror map data tables with the software algorithm. Based on the mirror map test model, the factors affecting mirror map are analyzed through geometric method on the UPMS with six digrees of freedom. Dam processing methods including spline interpolation and spline offsets are used to process the raw sampling data to build mirror map tables. The linear interpolation as compensation method to make a real-time correction on the stage mirror unflatness is adopted and the correction formulas are illuminated. In this way, the measurement accuracy of the system is obviously improved from 40 nm to 5 nm.展开更多
基金supported by the fund for innovative research from Shanghai University(No.A10-0401-12-001)the startup fund from the 211-project of the Education Committee of China through Shanghai University(No.A15-B002-09-032)
文摘An explicit, exact approach is proposed to obtain multi-axial elastic potentials for isotropic rubber-like materials undergoing large incompressible deformations. By means of two direct, explicit procedures, this approach reduces the problem of determining multi-axial poten- tials to that of determining one-dimensional elastic potentials. To this end, two one-dimensional potentials for uniaxial case and simple shear case are respectively determined via spline inter- polation and, then, the two potentials are extended to generate a multi-axial elastic potential using a novel method based on certain logarithmic invariants. Eventually, each of the multi-axial potentials will exactly match the finite strain data from four benchmark tests.
基金Sponsored by the National"863"Program Project (1020021300704)
文摘The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the constraints of the foot motion parameters which include obstacle dimensions and the distance of obstacle from the humanoid robot is formulated. By varying the values of the constraint parameters, different types of foot motion for different obstacles can be produced. In this method, first the foot trajectory is generated, and then the waist trajectory is computed by using cubic spline interpolation without first calculating the zero moment point (ZMP) trajectory . The dynamic stability during the execution of stepping over and stepping on/off trajectories are ensured by incorporating the ZMP criterion. The effectiveness of the proposed method is confirmed by simulations and experiments on humanoid robot BHR-2.
文摘The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new method to calibrate mirror map on ultraprecise movement stage (UPMS) with nanopositioning and to make a real-time compensation for the mirror surface error by using mirror map data tables with the software algorithm. Based on the mirror map test model, the factors affecting mirror map are analyzed through geometric method on the UPMS with six digrees of freedom. Dam processing methods including spline interpolation and spline offsets are used to process the raw sampling data to build mirror map tables. The linear interpolation as compensation method to make a real-time correction on the stage mirror unflatness is adopted and the correction formulas are illuminated. In this way, the measurement accuracy of the system is obviously improved from 40 nm to 5 nm.