Presently,we develop a simplified corticothalamic(SCT)model and propose a single-pulse alternately resetting stimulation(SARS)with sequentially applying anodic(A,“+”)or cathodic(C,“−”)phase pulses to the thalamic ...Presently,we develop a simplified corticothalamic(SCT)model and propose a single-pulse alternately resetting stimulation(SARS)with sequentially applying anodic(A,“+”)or cathodic(C,“−”)phase pulses to the thalamic reticular(RE)nuclei,thalamus-cortex(TC)relay nuclei,and cortical excitatory(EX)neurons,respectively.Abatement effects of ACC-SARS of RE,TC,and EX for the 2 Hz-4 Hz spike and wave discharges(SWD)of absence seizures are then concerned.The m∶n on-off ACC-SARS protocol is shown to effectively reduce the SWD with the least current consumption.In particular,when its frequency is out of the 2 Hz-4 Hz SWD dominant rhythm,the desired seizure abatements can be obtained,which can be further improved by our proposed directional steering(DS)stimulation.The dynamical explanations for the SARS induced seizure abatements are lastly given by calculating the averaged mean firing rate(AMFR)of neurons and triggering averaged mean firing rates(TAMFRs)of 2 Hz-4 Hz SWD.展开更多
The focus of this study is to explore the mechanisms during seizure behavior using a physiologically motivated by corticothalamic circuity. The model is based on the assumption that, the inhibitory projects from thala...The focus of this study is to explore the mechanisms during seizure behavior using a physiologically motivated by corticothalamic circuity. The model is based on the assumption that, the inhibitory projects from thalamus reticular nucleus(TRN) to specific relay nuclei(SRN) are mediated by GABAA and GABAB receptors which react different time scales in synaptic transmission.Secondly, we include the effects of slow modulation on the threshold current of TRN population that were found to generate bursting behavior. Our model can reproduce healthy and pathological dynamics including wake, spindle, deep sleep, and also seizure states. In addition, contour maps are used to explore the transition of different activity states. It is worthy to point out seizure duration is significantly affected by a time-varying delay as illustrated in our numerical simulation. Finally, a reduced model ignoring the cerebral cortex mass can also capture the feature of spike wave discharge as generated in the full network.展开更多
In this paper,a reduced globus pallidus internal(GPI)-corticothalamic(GCT)model is developed,and a tri-phase delay stimulation(TPDS)with sequentially applying three pulses on the GPI representing the inputs from the s...In this paper,a reduced globus pallidus internal(GPI)-corticothalamic(GCT)model is developed,and a tri-phase delay stimulation(TPDS)with sequentially applying three pulses on the GPI representing the inputs from the striatal D_(1)neurons,subthalamic nucleus(STN),and globus pallidus external(GPE),respectively,is proposed.The GPI is evidenced to control absence seizures characterized by 2 Hz–4 Hz spike and wave discharge(SWD).Hence,based on the basal ganglia-thalamocortical(BGCT)model,we firstly explore the triple effects of D_(1)-GPI,GPE-GPI,and STN-GPI pathways on seizure patterns.Then,using the GCT model,we apply the TPDS on the GPI to potentially investigate the alternative and improved approach if these pathways to the GPI are blocked.The results show that the striatum D_(1),GPE,and STN can indeed jointly and significantly affect seizure patterns.In particular,the TPDS can effectively reproduce the seizure pattern if the D_(1)-GPI,GPE-GPI,and STN-GPI pathways are cut off.In addition,the seizure abatement can be obtained by well tuning the TPDS stimulation parameters.This implies that the TPDS can play the surrogate role similar to the modulation of basal ganglia,which hopefully can be helpful for the development of the brain-computer interface in the clinical application of epilepsy.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11702018,11932003,and 11672074)。
文摘Presently,we develop a simplified corticothalamic(SCT)model and propose a single-pulse alternately resetting stimulation(SARS)with sequentially applying anodic(A,“+”)or cathodic(C,“−”)phase pulses to the thalamic reticular(RE)nuclei,thalamus-cortex(TC)relay nuclei,and cortical excitatory(EX)neurons,respectively.Abatement effects of ACC-SARS of RE,TC,and EX for the 2 Hz-4 Hz spike and wave discharges(SWD)of absence seizures are then concerned.The m∶n on-off ACC-SARS protocol is shown to effectively reduce the SWD with the least current consumption.In particular,when its frequency is out of the 2 Hz-4 Hz SWD dominant rhythm,the desired seizure abatements can be obtained,which can be further improved by our proposed directional steering(DS)stimulation.The dynamical explanations for the SARS induced seizure abatements are lastly given by calculating the averaged mean firing rate(AMFR)of neurons and triggering averaged mean firing rates(TAMFRs)of 2 Hz-4 Hz SWD.
基金supported by the Foundational Research Funds for the Central Universities(Grant Nos.G2016KY0301)the National Natural Science Foundation of China(Grant Nos.11602192&11672074)
文摘The focus of this study is to explore the mechanisms during seizure behavior using a physiologically motivated by corticothalamic circuity. The model is based on the assumption that, the inhibitory projects from thalamus reticular nucleus(TRN) to specific relay nuclei(SRN) are mediated by GABAA and GABAB receptors which react different time scales in synaptic transmission.Secondly, we include the effects of slow modulation on the threshold current of TRN population that were found to generate bursting behavior. Our model can reproduce healthy and pathological dynamics including wake, spindle, deep sleep, and also seizure states. In addition, contour maps are used to explore the transition of different activity states. It is worthy to point out seizure duration is significantly affected by a time-varying delay as illustrated in our numerical simulation. Finally, a reduced model ignoring the cerebral cortex mass can also capture the feature of spike wave discharge as generated in the full network.
基金supported by the National Natural Science Foundation of China(Nos.11932003,12072021,and 11672074)。
文摘In this paper,a reduced globus pallidus internal(GPI)-corticothalamic(GCT)model is developed,and a tri-phase delay stimulation(TPDS)with sequentially applying three pulses on the GPI representing the inputs from the striatal D_(1)neurons,subthalamic nucleus(STN),and globus pallidus external(GPE),respectively,is proposed.The GPI is evidenced to control absence seizures characterized by 2 Hz–4 Hz spike and wave discharge(SWD).Hence,based on the basal ganglia-thalamocortical(BGCT)model,we firstly explore the triple effects of D_(1)-GPI,GPE-GPI,and STN-GPI pathways on seizure patterns.Then,using the GCT model,we apply the TPDS on the GPI to potentially investigate the alternative and improved approach if these pathways to the GPI are blocked.The results show that the striatum D_(1),GPE,and STN can indeed jointly and significantly affect seizure patterns.In particular,the TPDS can effectively reproduce the seizure pattern if the D_(1)-GPI,GPE-GPI,and STN-GPI pathways are cut off.In addition,the seizure abatement can be obtained by well tuning the TPDS stimulation parameters.This implies that the TPDS can play the surrogate role similar to the modulation of basal ganglia,which hopefully can be helpful for the development of the brain-computer interface in the clinical application of epilepsy.