We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived...We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N2 appears for -1 1 . The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation inspherical coordinates.展开更多
Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Alg...Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.展开更多
Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary conditio...Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary condition was given by introducing Couette flow.Second,the analytical expressions of the eigenfunction of the Stokes operator in the cylindrical gap region were given and its orthogonality was proved.The estimates of growth rate of the eigenvalue were presented.Finally,spectral Galerkin approximation of Couette-Taylor flow was discussed by introducing eigenfunctions of Stokes operator as basis of finite dimensional approximate subspaces.The existence,uniquence and convergence of spectral Galerkin approximation of nonsingular solution for the steady-state Navier-Stokes equations are proved.Moreover,the error estimates are given.Numerical result is presented.展开更多
Subdivision algorithm (Stationary or Non-stationary) is one of the most active and exciting research topics in wavelet analysis and applied mathematical theory. In multidimensional non-stationary situation, its limi...Subdivision algorithm (Stationary or Non-stationary) is one of the most active and exciting research topics in wavelet analysis and applied mathematical theory. In multidimensional non-stationary situation, its limit functions are both compactly supported and infinitely differentiable. Also, these limit functions can serve as the scaling functions to generate the multidimensional non-stationary orthogonal or biorthogonal semi-multiresolution analysis (Semi-MRAs). The spectral approximation property of multidimensional non-stationary biorthogonal Semi-MRAs is considered in this paper. Based on nonstationary subdivision scheme and its limit scaling functions, it is shown that the multidimensional nonstationary biorthogonal Semi-MRAs have spectral approximation order r in Sobolev space H^s(R^d), for all r ≥ s ≥ 0.展开更多
Examines the development of the composite legendre approximation in unbounded domains. Proof of the stability and convergence of a proposed scheme; Discussion of two-dimensional exterior problems; Error estimations.
Several mixed Legendre spectral-pseudospectral approximations and Chebyshev-Legendre ap- proximations are proposed for estimating parameters in differential equations. They are easy to be performed, and have the spect...Several mixed Legendre spectral-pseudospectral approximations and Chebyshev-Legendre ap- proximations are proposed for estimating parameters in differential equations. They are easy to be performed, and have the spectral accuracy. The numerical results coincide with those of the theoretical analysis. It is easy to generalize the proposed methods to multiple-dimensional prob- lems.展开更多
The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is presented, which is easy to be performed. It ...The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is presented, which is easy to be performed. It is strictly proved that the numerical solution possesses the accuracy of second-order in time and higher order in space.展开更多
In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential e...In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential equation. The fine solver is based on the finite element method or spectral element method in space and a semi-implicit Runge-Kutta scheme in time. The coarse solver is based on a semi-implicit scheme in time and the reduced basis approximation in space. Of[line-online procedures are developed, and it is proved that the computational complexity of the on-line stage depends only on the dimension of the reduced basis space (typically small). Parareal in time algorithms based on a multi-grids finite element method and a multi-degrees finite element method are also presented. Some numerical results are reported.展开更多
文摘We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N2 appears for -1 1 . The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation inspherical coordinates.
文摘Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.
文摘Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary condition was given by introducing Couette flow.Second,the analytical expressions of the eigenfunction of the Stokes operator in the cylindrical gap region were given and its orthogonality was proved.The estimates of growth rate of the eigenvalue were presented.Finally,spectral Galerkin approximation of Couette-Taylor flow was discussed by introducing eigenfunctions of Stokes operator as basis of finite dimensional approximate subspaces.The existence,uniquence and convergence of spectral Galerkin approximation of nonsingular solution for the steady-state Navier-Stokes equations are proved.Moreover,the error estimates are given.Numerical result is presented.
文摘Subdivision algorithm (Stationary or Non-stationary) is one of the most active and exciting research topics in wavelet analysis and applied mathematical theory. In multidimensional non-stationary situation, its limit functions are both compactly supported and infinitely differentiable. Also, these limit functions can serve as the scaling functions to generate the multidimensional non-stationary orthogonal or biorthogonal semi-multiresolution analysis (Semi-MRAs). The spectral approximation property of multidimensional non-stationary biorthogonal Semi-MRAs is considered in this paper. Based on nonstationary subdivision scheme and its limit scaling functions, it is shown that the multidimensional nonstationary biorthogonal Semi-MRAs have spectral approximation order r in Sobolev space H^s(R^d), for all r ≥ s ≥ 0.
文摘Examines the development of the composite legendre approximation in unbounded domains. Proof of the stability and convergence of a proposed scheme; Discussion of two-dimensional exterior problems; Error estimations.
基金the Chinese Key project on Basic Research (No.1999032804), and Shanghai Natural Science Foundation (No.00JC14D57).
文摘Several mixed Legendre spectral-pseudospectral approximations and Chebyshev-Legendre ap- proximations are proposed for estimating parameters in differential equations. They are easy to be performed, and have the spectral accuracy. The numerical results coincide with those of the theoretical analysis. It is easy to generalize the proposed methods to multiple-dimensional prob- lems.
文摘The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is presented, which is easy to be performed. It is strictly proved that the numerical solution possesses the accuracy of second-order in time and higher order in space.
文摘In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential equation. The fine solver is based on the finite element method or spectral element method in space and a semi-implicit Runge-Kutta scheme in time. The coarse solver is based on a semi-implicit scheme in time and the reduced basis approximation in space. Of[line-online procedures are developed, and it is proved that the computational complexity of the on-line stage depends only on the dimension of the reduced basis space (typically small). Parareal in time algorithms based on a multi-grids finite element method and a multi-degrees finite element method are also presented. Some numerical results are reported.