Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteit...Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of –0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.展开更多
Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China. Quantifying the crop potential yield is essential f...Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China. Quantifying the crop potential yield is essential for estimating the food production capacity and improving agricultural policies to ensure food security. Gradually descending models and geographic infor- mation system (GIS) technology were employed to characterize the spatial variability of potential yields and yield gaps in winter wheat across the main production region of China. The results showed that during 2000-2010, the average potential yield limited by thermal resource (YGT) was 23.2 Mg ha-1, with larger value in the northern area relative to the southern area. The potential yield limited by the water supply (YGw) generally decreased from north to south, with an average value of 1.9 Mg ha-1 across the entire study region. The highest YGw in the north sub-region (NS) implied that the irrigation and drainage conditions in this sub-region must be improved. The averaged yield loss of winter wheat from nutrient deficiency (YGH) varied between 2.1 and 3.1 Mg ha-1 in the study area, which was greater than the yield loss caused by water limitation. The potential decrease in yield from photo-thermal-water-nutrient-limited production to actual yield (YGo) was over 6.0 Mg ha-1, ranging from 4.9 to 8.3 Mg ha^-1 across the entire study region, and it was more obvious in the southern area than in the northern area. These findings suggest that across the main winter wheat production region, the highest yield gap was induced by thermal resources, followed by other factors, such as the level of farming technology, social policy and economic feasibility. Furthermore, there are opportunities to narrow the yield gaps by making full use of climatic resources and developing a reasonable production plan for winter wheat crops. Thus, meeting the challenges of food security and sustainability in the coming decades is possible but will require展开更多
基金National Basic Research Program of China,No.2010CB951404National Basic Research Program of China,No.2007CB411501+5 种基金 National Natural Science Foundation of China (NSFC),No.40971019 No.90511007 No.40801028 NSFC,No.J0630966 Major Directionality Program of the Chinese Academy of Sciences,No.KZCXZ-YW-317 West Light Foundation of the Chinese Academy of Sciences,No.O828A11001
文摘Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961–2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of –0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.
基金supported by the National High-Tech R&D Program of China(863 Program,2013AA100404)the National Natural Science Foundation of China(31301234 and 31271616)+1 种基金the National Research Foundation for the Doctoral Program of Higher Education of China(20120097110042)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China. Quantifying the crop potential yield is essential for estimating the food production capacity and improving agricultural policies to ensure food security. Gradually descending models and geographic infor- mation system (GIS) technology were employed to characterize the spatial variability of potential yields and yield gaps in winter wheat across the main production region of China. The results showed that during 2000-2010, the average potential yield limited by thermal resource (YGT) was 23.2 Mg ha-1, with larger value in the northern area relative to the southern area. The potential yield limited by the water supply (YGw) generally decreased from north to south, with an average value of 1.9 Mg ha-1 across the entire study region. The highest YGw in the north sub-region (NS) implied that the irrigation and drainage conditions in this sub-region must be improved. The averaged yield loss of winter wheat from nutrient deficiency (YGH) varied between 2.1 and 3.1 Mg ha-1 in the study area, which was greater than the yield loss caused by water limitation. The potential decrease in yield from photo-thermal-water-nutrient-limited production to actual yield (YGo) was over 6.0 Mg ha-1, ranging from 4.9 to 8.3 Mg ha^-1 across the entire study region, and it was more obvious in the southern area than in the northern area. These findings suggest that across the main winter wheat production region, the highest yield gap was induced by thermal resources, followed by other factors, such as the level of farming technology, social policy and economic feasibility. Furthermore, there are opportunities to narrow the yield gaps by making full use of climatic resources and developing a reasonable production plan for winter wheat crops. Thus, meeting the challenges of food security and sustainability in the coming decades is possible but will require