提出了两种基于相邻关系的地理标识语言空间线对象离群检测算法:DOL-AR1和DOL-AR2,定义了基于相邻关系的空间线对象之间的相异度,DOL-AR1将基于相邻关系的相异度作为空间线对象之间的距离度量准则,利用Density-based Spatial Clustering...提出了两种基于相邻关系的地理标识语言空间线对象离群检测算法:DOL-AR1和DOL-AR2,定义了基于相邻关系的空间线对象之间的相异度,DOL-AR1将基于相邻关系的相异度作为空间线对象之间的距离度量准则,利用Density-based Spatial Clustering of Applications with Noise算法检测出离群的空间线对象.算法DOL-AR2以基于相邻关系的相异度为准则对空间线对象进行聚类,根据每个簇的离群因子,检测该簇是否离群.实验结果表明,算法DOL-AR1和算法DOL-AR2都能有效地检测出离群的线对象,本文对提出的两种离群检测算法的性能进行了比较,发现算法DOL-AR2的效率要高于算法DOL-AR1的效率.展开更多
文摘提出了两种基于相邻关系的地理标识语言空间线对象离群检测算法:DOL-AR1和DOL-AR2,定义了基于相邻关系的空间线对象之间的相异度,DOL-AR1将基于相邻关系的相异度作为空间线对象之间的距离度量准则,利用Density-based Spatial Clustering of Applications with Noise算法检测出离群的空间线对象.算法DOL-AR2以基于相邻关系的相异度为准则对空间线对象进行聚类,根据每个簇的离群因子,检测该簇是否离群.实验结果表明,算法DOL-AR1和算法DOL-AR2都能有效地检测出离群的线对象,本文对提出的两种离群检测算法的性能进行了比较,发现算法DOL-AR2的效率要高于算法DOL-AR1的效率.