期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Sp-IEclat:一种大数据并行关联规则挖掘算法
被引量:
21
1
作者
李成严
辛雪
+1 位作者
赵帅
冯世祥
《哈尔滨理工大学学报》
CAS
北大核心
2021年第4期109-118,共10页
针对大数据环境下关联规则数据挖掘效率不高的问题,采用Eclat算法使用垂直数据库将事务的合并转换成集合操作的方法。研究了一种大数据并行关联规则挖掘算法-Sp-IEclat(Improved Eclat algorithm on Spark Framework),该算法基于内存计...
针对大数据环境下关联规则数据挖掘效率不高的问题,采用Eclat算法使用垂直数据库将事务的合并转换成集合操作的方法。研究了一种大数据并行关联规则挖掘算法-Sp-IEclat(Improved Eclat algorithm on Spark Framework),该算法基于内存计算的Spark框架,减少磁盘输入输出降低I/O负载,使用位图运算降低交集的时间代价并减少CPU占用,采用前缀划分的剪枝技术减少求交集运算的数据量,降低运算时间。使用mushroom数据集和webdocs数据集在两种大数据平台下实验,结果表明,Sp-IEclat算法的时间效率优于MapReduce框架下的Eclat算法及Spark框架下的FP-Growth算法和Eclat算法。从对集群的性能监控得到的数值表明,同Spark框架下的FP-Growth算法和Eclat算法相比,Sp-IEclat算法的CPU占用和I/O集群负载都较小。
展开更多
关键词
大
数据
关联规则挖掘
频繁项
集
spark
弹性
分布式
数据
集
MAPREDUCE框架
下载PDF
职称材料
题名
Sp-IEclat:一种大数据并行关联规则挖掘算法
被引量:
21
1
作者
李成严
辛雪
赵帅
冯世祥
机构
哈尔滨理工大学计算机科学与技术学院
出处
《哈尔滨理工大学学报》
CAS
北大核心
2021年第4期109-118,共10页
基金
黑龙江省教育厅科学技术研究项目(12541142).
文摘
针对大数据环境下关联规则数据挖掘效率不高的问题,采用Eclat算法使用垂直数据库将事务的合并转换成集合操作的方法。研究了一种大数据并行关联规则挖掘算法-Sp-IEclat(Improved Eclat algorithm on Spark Framework),该算法基于内存计算的Spark框架,减少磁盘输入输出降低I/O负载,使用位图运算降低交集的时间代价并减少CPU占用,采用前缀划分的剪枝技术减少求交集运算的数据量,降低运算时间。使用mushroom数据集和webdocs数据集在两种大数据平台下实验,结果表明,Sp-IEclat算法的时间效率优于MapReduce框架下的Eclat算法及Spark框架下的FP-Growth算法和Eclat算法。从对集群的性能监控得到的数值表明,同Spark框架下的FP-Growth算法和Eclat算法相比,Sp-IEclat算法的CPU占用和I/O集群负载都较小。
关键词
大
数据
关联规则挖掘
频繁项
集
spark
弹性
分布式
数据
集
MAPREDUCE框架
Keywords
big data
association rule data mining
frequent itemset
spark
resilient distributed dataset(RDD)
MapReduce framework
分类号
TP399 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Sp-IEclat:一种大数据并行关联规则挖掘算法
李成严
辛雪
赵帅
冯世祥
《哈尔滨理工大学学报》
CAS
北大核心
2021
21
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部