High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. ...High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.展开更多
The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or ...The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.展开更多
基金supported by China Petroleum Technology Innovation Fund Project(Grant No.0610740122)
文摘High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.
基金supported by the National Key Research and Development Program of China(2016YFA0302300 and 2017YFA0206200)Basic Science Center Program of the National Natural Science Foundation of China(51788104)+5 种基金National Natural Science Foundation of China(11974052,51972028)Beijing Natural Science Foundation(Z190008)Chinese Academy of Sciences Interdisciplinary Innovation Teamfunded by the Director,Office of Science,Office of Basic Energy Sciences,Materials Science and Engineering Department of the US Department of Energy(DOE)in the Quantum Materials Program(KC2202)under Contract No.DEAC02-05CH11231the support by the Science Alliance Joint Directed Research&Development Programthe Transdisciplinary Academy Program at the University of Tennessee。
文摘The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.