Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and ...Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.展开更多
文摘Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.