长期载人航天中必须突破的关键技术是水和氧气的循环再生。微重力下,水和氧气的循环再生首要解决的问题是气液两相流的分离。空间动态水气分离器利用离心力原理实现气液分离,但由于地面无法长时间模拟微重力环境,因而无法评价动态水气...长期载人航天中必须突破的关键技术是水和氧气的循环再生。微重力下,水和氧气的循环再生首要解决的问题是气液两相流的分离。空间动态水气分离器利用离心力原理实现气液分离,但由于地面无法长时间模拟微重力环境,因而无法评价动态水气分离器在失重条件下的工作性能。2010年3月利用法国NOVESPACE Airbus A300 ZERO-G失重飞机,对空间动态水气分离器的水气分离效果进行了研究。结果观察到抛物线飞行过程中,分离液体中的含气率变化总体效果与地面重力条件下一致;而分离气体中观察到可视液滴,与地面重力条件下无可视液滴的结果不同。说明空间动态水气分离器的工作性能受重力影响,地面评价方法还需进一步完善。2012年10月再次利用法国的失重飞机,对改进后的动态水气分离器进行了搭载试验,结果显示分离性能已满足要求,验证了改进方法的正确性。展开更多
The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific p...The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific payloads, a multi-function furnace for 8 material researches and three-dimensional cell cultures for the neural stem cell and the hematopoietic stem cell respectively. The recoverable satellite consists mainly of two capsules: a recoverable capsule was recovered on 18 April 2016, with all payloads of life science, the multi-function furnace and the payload for measurement of Soret Coefficients of Crude Oil(SCCO); and an un-recoverable capsule continued to work in additional 3 days with all other physics payloads. The experiments were operated via teleoperations, and all experimental data were received by the ground station in real time.The data and recoverable samples are analyzed by the experiment teams of the program.展开更多
In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was...In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was further studied from physiology phenomena to the level of bio-molecule mechanisms. Chinese space life science is maturing in a new era of comprehensive development.Here, we review and summarize researches on space life sciences which were contributed by Chinese scientists.展开更多
文摘长期载人航天中必须突破的关键技术是水和氧气的循环再生。微重力下,水和氧气的循环再生首要解决的问题是气液两相流的分离。空间动态水气分离器利用离心力原理实现气液分离,但由于地面无法长时间模拟微重力环境,因而无法评价动态水气分离器在失重条件下的工作性能。2010年3月利用法国NOVESPACE Airbus A300 ZERO-G失重飞机,对空间动态水气分离器的水气分离效果进行了研究。结果观察到抛物线飞行过程中,分离液体中的含气率变化总体效果与地面重力条件下一致;而分离气体中观察到可视液滴,与地面重力条件下无可视液滴的结果不同。说明空间动态水气分离器的工作性能受重力影响,地面评价方法还需进一步完善。2012年10月再次利用法国的失重飞机,对改进后的动态水气分离器进行了搭载试验,结果显示分离性能已满足要求,验证了改进方法的正确性。
文摘The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific payloads, a multi-function furnace for 8 material researches and three-dimensional cell cultures for the neural stem cell and the hematopoietic stem cell respectively. The recoverable satellite consists mainly of two capsules: a recoverable capsule was recovered on 18 April 2016, with all payloads of life science, the multi-function furnace and the payload for measurement of Soret Coefficients of Crude Oil(SCCO); and an un-recoverable capsule continued to work in additional 3 days with all other physics payloads. The experiments were operated via teleoperations, and all experimental data were received by the ground station in real time.The data and recoverable samples are analyzed by the experiment teams of the program.
文摘In the past two years, space life science research in China is characterized by a wide area of basic researches for providing foundation for the future China Space Station. The effect of microgravity and radiation was further studied from physiology phenomena to the level of bio-molecule mechanisms. Chinese space life science is maturing in a new era of comprehensive development.Here, we review and summarize researches on space life sciences which were contributed by Chinese scientists.