The quartz vein-type gold deposits are widely hosted by the Neoproterozoic(Xiajiang Group) epimetamorphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occ...The quartz vein-type gold deposits are widely hosted by the Neoproterozoic(Xiajiang Group) epimetamorphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occurs in the second lithological member of the Pinglue Formation of the Xiajiang Group. Trace element geochemistry of host rocks, quartz veins and arsenopyrite has revealed that ore-forming fluid was enriched in sulphophile elements such as Au, Ag, As, Sb, Pb and Zn, and simultaneously concentrated some magmaphile elements such as W and Mo, which probably provides some evidence for multi-stage mineralization or overprinting of magmatic hydrotherm. Quartz veins and arsenopyrite were characterized by depletion in HFSE and enrichment in LREE. Hf/Sm, Nb/La and Th/La imply that the ore-forming fluid was probably a NaCl-H2O solution system enriched in more Cl than F; Th/U values reflect the strong reducibility of the ore-forming fluid, coincident with the sulfide assemblages. The values of Co/Ni reflect that magmatic fluids may have partly participated in the ore-forming process and Y/Ho values have proved that the ore-forming fluid was associated with metamorphism and exotic hydrotherm which has reformed former quartz veins during late mineralization. The concentrations of REE, Eu anomalies and Ce anomalies of this deposit display that ore-forming elements mainly were derived from host rocks and possibly from a mixed deep source, and the ore-forming fluid was mixed by dominant metamorphic fluid and minor other sources. The physical-chemical conditions of ore-forming fluid changed from the initial stage to the late stage. The metamorphic fluid is responsible for the mineralization. Therefore, the Zhewang gold deposit is classified as a quartz vein-type gold deposit which may have been reformed by magmatic fluids during the late stage.展开更多
基金supported jointly by the Doctoral Program of the Ministry of Education of China (20105201110002)the Program of Bureau of Geology and Mineral Resources of Guizhou Province+1 种基金 the Provincial Foundation of Guizhou Provincethe Doctoral Program Foundation of Guizhou University
文摘The quartz vein-type gold deposits are widely hosted by the Neoproterozoic(Xiajiang Group) epimetamorphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occurs in the second lithological member of the Pinglue Formation of the Xiajiang Group. Trace element geochemistry of host rocks, quartz veins and arsenopyrite has revealed that ore-forming fluid was enriched in sulphophile elements such as Au, Ag, As, Sb, Pb and Zn, and simultaneously concentrated some magmaphile elements such as W and Mo, which probably provides some evidence for multi-stage mineralization or overprinting of magmatic hydrotherm. Quartz veins and arsenopyrite were characterized by depletion in HFSE and enrichment in LREE. Hf/Sm, Nb/La and Th/La imply that the ore-forming fluid was probably a NaCl-H2O solution system enriched in more Cl than F; Th/U values reflect the strong reducibility of the ore-forming fluid, coincident with the sulfide assemblages. The values of Co/Ni reflect that magmatic fluids may have partly participated in the ore-forming process and Y/Ho values have proved that the ore-forming fluid was associated with metamorphism and exotic hydrotherm which has reformed former quartz veins during late mineralization. The concentrations of REE, Eu anomalies and Ce anomalies of this deposit display that ore-forming elements mainly were derived from host rocks and possibly from a mixed deep source, and the ore-forming fluid was mixed by dominant metamorphic fluid and minor other sources. The physical-chemical conditions of ore-forming fluid changed from the initial stage to the late stage. The metamorphic fluid is responsible for the mineralization. Therefore, the Zhewang gold deposit is classified as a quartz vein-type gold deposit which may have been reformed by magmatic fluids during the late stage.