Exploring the relationships between landscape pattern and ecological processes is the key topic of landscape ecology,for which,a large number of indices as well as landscape pattern analysis model were developed.Howev...Exploring the relationships between landscape pattern and ecological processes is the key topic of landscape ecology,for which,a large number of indices as well as landscape pattern analysis model were developed.However,one problem faced by landscape ecologists is that it is hard to link the landscape indices with a specific ecological process.Linking landscape pattern and ecological processes has become a challenge for landscape ecologists.“Source”and“sink”are common concepts used in air pollution research,by which the movement direction and pattern of different pollutants in air can be clearly identified.In fact,for any ecological process,the research can be considered as a balance between the source and the sink in space.Thus,the concepts of“source”and“sink”could be implemented to the research of landscape pattern and ecological processes.In this paper,a theory of sourcesink landscape was proposed,which include:(1)In the research of landscape pattern and ecological process,all landscape types can be divided into two groups,“source”landscape and“sink”landscape.“Source”landscape contributes positively to the ecological process,while“sink”landscape is unhelpful to the ecological process.(2)Both landscapes are recognized with regard to the specific ecological process.“Source”landscape in a target ecological process may change into a“sink”landscape as in another ecological process.Therefore,the ecological process should be determined before“source”or“sink”landscape were defined.(3)The key point to distinguish“source”landscape from“sink”landscape is to quantify the effect of landscape on ecological process.The positive effect is made by“source”landscape,and the negative effect by“sink”landscape.(4)For the same ecological process,the contribution of“source”landscapes may vary,and it is the same to the“sink”landscapes.It is required to determine the weight of each landscape type on ecological processes.(5)The sourcesink principle can be applie展开更多
The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectivel...The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectively. Therefore, the role of a catchment landscape pattern in nutrient losses can be identified based on the spatial arrangement of source and sink landscapes. To reveal the relations between landscape spatial characteristics and NPS pollution in small catchment, a case study was carried out in a Wangjiagou small catchment of the Three Gorges Reservoir Region(TGRR), China. Google earth imagery for 2015 were processed and used to differentiate source and sink landscape types, and six subcatchments were selected as sample regions for monitoring nitrogen and phosphorus nutrients.Relative elevation, slope gradient and relative flow length was used to construct the Lorenz curves of different source and sink landscape types in the catchment, in order to assess the source and sink landscape spatial characteristics. By calculating the location-weighted landscape indices of each subcatchment and total catchment, the landscape spatial load characteristics affecting the NPS pollution was identified, with a further Pearson correlation analysis for location-weighted landscape indices and nitrogen-phosphorus monitoring indicators. The analysis of Lorenz curve has revealed that the obtained distribution trend of Lorenz curve and curve area quantified well the spatial characteristics of source and sink landscape pattern related to the relative elevation, slope gradient and relative flow length in small catchment. Results of Pearson correction analysis indicated that location-weighted landscape index(LWLI) combining of terrain and landscape type factor did better in reflecting the status of nitrogen and phosphorus loss than the indices related to relative elevation, slope gradient and relative flow length.展开更多
The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has bec...The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.30570319 and 40621061).
文摘Exploring the relationships between landscape pattern and ecological processes is the key topic of landscape ecology,for which,a large number of indices as well as landscape pattern analysis model were developed.However,one problem faced by landscape ecologists is that it is hard to link the landscape indices with a specific ecological process.Linking landscape pattern and ecological processes has become a challenge for landscape ecologists.“Source”and“sink”are common concepts used in air pollution research,by which the movement direction and pattern of different pollutants in air can be clearly identified.In fact,for any ecological process,the research can be considered as a balance between the source and the sink in space.Thus,the concepts of“source”and“sink”could be implemented to the research of landscape pattern and ecological processes.In this paper,a theory of sourcesink landscape was proposed,which include:(1)In the research of landscape pattern and ecological process,all landscape types can be divided into two groups,“source”landscape and“sink”landscape.“Source”landscape contributes positively to the ecological process,while“sink”landscape is unhelpful to the ecological process.(2)Both landscapes are recognized with regard to the specific ecological process.“Source”landscape in a target ecological process may change into a“sink”landscape as in another ecological process.Therefore,the ecological process should be determined before“source”or“sink”landscape were defined.(3)The key point to distinguish“source”landscape from“sink”landscape is to quantify the effect of landscape on ecological process.The positive effect is made by“source”landscape,and the negative effect by“sink”landscape.(4)For the same ecological process,the contribution of“source”landscapes may vary,and it is the same to the“sink”landscapes.It is required to determine the weight of each landscape type on ecological processes.(5)The sourcesink principle can be applie
基金funded by the National Natural Science Foundation of China (Grant No.41671291)
文摘The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectively. Therefore, the role of a catchment landscape pattern in nutrient losses can be identified based on the spatial arrangement of source and sink landscapes. To reveal the relations between landscape spatial characteristics and NPS pollution in small catchment, a case study was carried out in a Wangjiagou small catchment of the Three Gorges Reservoir Region(TGRR), China. Google earth imagery for 2015 were processed and used to differentiate source and sink landscape types, and six subcatchments were selected as sample regions for monitoring nitrogen and phosphorus nutrients.Relative elevation, slope gradient and relative flow length was used to construct the Lorenz curves of different source and sink landscape types in the catchment, in order to assess the source and sink landscape spatial characteristics. By calculating the location-weighted landscape indices of each subcatchment and total catchment, the landscape spatial load characteristics affecting the NPS pollution was identified, with a further Pearson correlation analysis for location-weighted landscape indices and nitrogen-phosphorus monitoring indicators. The analysis of Lorenz curve has revealed that the obtained distribution trend of Lorenz curve and curve area quantified well the spatial characteristics of source and sink landscape pattern related to the relative elevation, slope gradient and relative flow length in small catchment. Results of Pearson correction analysis indicated that location-weighted landscape index(LWLI) combining of terrain and landscape type factor did better in reflecting the status of nitrogen and phosphorus loss than the indices related to relative elevation, slope gradient and relative flow length.
文摘The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.