To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and...To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and plane location tests were carried out in the granite rod using two sensors and the cube of marble using four sensors, respectively. To compare the position accuracy between line and plane positions, the line poison test was also carried out on the marble surface. The results show that for line positioning, the maximum error of absolute distance is about 0.8 cm. With the speed difference of 200 m/s, the average value of absolute difference from the position error is about 0.4 cm. For the plane positioning, in the case of the sensor array of 30 cm, the absolute positioning distance is up to 8.7 cm. It can be seen that the sonic speed seriously impacts on the plane positioning accuracy. The plane positioning error is lager than the line positioning error, which means that when the line position can satisfy the need in practical engineering, it is better to use the line position instead of the plane location. The plane positioning error with the diagonal speed is the minimum one.展开更多
The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high...The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.展开更多
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China
文摘To quantitatively study the location errors induced by deviation of sonic speed, the line and plane location tests were carried out. A broken pencil was simulated as acoustic emission source in the rocks. The line and plane location tests were carried out in the granite rod using two sensors and the cube of marble using four sensors, respectively. To compare the position accuracy between line and plane positions, the line poison test was also carried out on the marble surface. The results show that for line positioning, the maximum error of absolute distance is about 0.8 cm. With the speed difference of 200 m/s, the average value of absolute difference from the position error is about 0.4 cm. For the plane positioning, in the case of the sensor array of 30 cm, the absolute positioning distance is up to 8.7 cm. It can be seen that the sonic speed seriously impacts on the plane positioning accuracy. The plane positioning error is lager than the line positioning error, which means that when the line position can satisfy the need in practical engineering, it is better to use the line position instead of the plane location. The plane positioning error with the diagonal speed is the minimum one.
基金supported by the special funds of Laoshan Laboratory(No.LSKJ202203604)the National Key Research and Development Program of China(No.2016 YFC0303901).
文摘The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.