The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war...The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.展开更多
A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with s...A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h^(-1)(STP).The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H_(2)S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H_(2)S and COS.Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent,and FeO and Fe are active components formed by reduction during sulfidation.The crystal phases of iron affect obviously their desulfurization capacity.The reducibility of sorbent changes with the content of MnO in sorbent.S7F3M and S3F7M have bigger sulfur capacities(32.68 and 32.30 gS/100 g total active component),while S5F5M has smaller sulfur capacity(21.92 gS/100 g total active component).S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation.The sulfidation performance of ironmanganese-based sorbent is also related with its specific surface area and pore volume.展开更多
基金support for this work by the International Science & Technology Cooperation Program of China (2010DFB70560) and(2010GH0902)
文摘The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.
基金support of the National Basic Research Program of China(2005CB221203)the National Natural Science Foundation of China(Grant No.20976117)+1 种基金Shanxi Province Natural Science Foundation(2010011014-3)Shanxi Province Basic Conditions Platform for Science and Technology Project(2010091015).
文摘A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h^(-1)(STP).The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H_(2)S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H_(2)S and COS.Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent,and FeO and Fe are active components formed by reduction during sulfidation.The crystal phases of iron affect obviously their desulfurization capacity.The reducibility of sorbent changes with the content of MnO in sorbent.S7F3M and S3F7M have bigger sulfur capacities(32.68 and 32.30 gS/100 g total active component),while S5F5M has smaller sulfur capacity(21.92 gS/100 g total active component).S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation.The sulfidation performance of ironmanganese-based sorbent is also related with its specific surface area and pore volume.