Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA...Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA's estimation precision.Analysis results show that the directional vector estimation precision of DPCA is low,which will produce accumulating errors when phase cen-ters' track is estimated.Because of this reason,DPCA suffers from accumulating errors seriously.To overcome this problem,a method combining DPCA with Sub Aperture Image Correlation(SAIC) is presented.Large synthetic aperture is divided into sub-apertures.Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data.Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images.After that,sub-aperture images are directly used to generate ultimate SAS image.The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system.Results show the method can successfully remove the accumulating error and produce a better SAS image.展开更多
Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering m...Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering models strongly depends on the size and structure of the scattered surface.In accurate scattering models including numerical models,the computational cost significantly increases with the object complexity.In this paper,an efficient model is proposed to calculate the acoustic scattering from underwater objects with less computational cost and time compared with numerical models,especially in 3D space.The proposed model,called texture element method(TEM),uses statistical and structural information of the target surface texture by employing non-uniform elements described with local binary pattern(LBP)descriptors by solving the Helmholtz integral equation.The proposed model is compared with two other well-known models,one numerical and other analytical,and the results show excellent agreement between them while the proposed model requires fewer elements.This demonstrates the ability of the proposed model to work with arbitrary targets in different SAS systems with better computational time and cost,enabling the proposed model to be applied in real environment.展开更多
Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, fo...Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2007AA 091101)
文摘Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA's estimation precision.Analysis results show that the directional vector estimation precision of DPCA is low,which will produce accumulating errors when phase cen-ters' track is estimated.Because of this reason,DPCA suffers from accumulating errors seriously.To overcome this problem,a method combining DPCA with Sub Aperture Image Correlation(SAIC) is presented.Large synthetic aperture is divided into sub-apertures.Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data.Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images.After that,sub-aperture images are directly used to generate ultimate SAS image.The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system.Results show the method can successfully remove the accumulating error and produce a better SAS image.
文摘Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering models strongly depends on the size and structure of the scattered surface.In accurate scattering models including numerical models,the computational cost significantly increases with the object complexity.In this paper,an efficient model is proposed to calculate the acoustic scattering from underwater objects with less computational cost and time compared with numerical models,especially in 3D space.The proposed model,called texture element method(TEM),uses statistical and structural information of the target surface texture by employing non-uniform elements described with local binary pattern(LBP)descriptors by solving the Helmholtz integral equation.The proposed model is compared with two other well-known models,one numerical and other analytical,and the results show excellent agreement between them while the proposed model requires fewer elements.This demonstrates the ability of the proposed model to work with arbitrary targets in different SAS systems with better computational time and cost,enabling the proposed model to be applied in real environment.
文摘Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.