The garnet-type electrolytes such as Ta-doped Li7La3Zr2Ol2 (LLZTO) have been viewed as the promising electrolytes for solid-state lithium batteries, but it exhibits problem of high interfacial resistance (1960 Ω...The garnet-type electrolytes such as Ta-doped Li7La3Zr2Ol2 (LLZTO) have been viewed as the promising electrolytes for solid-state lithium batteries, but it exhibits problem of high interfacial resistance (1960 Ω·cm^2) and short circuit when being cycled in Li/LLZTO/Li cells at the current density above 0.5 mA·cm^-2. Introduction of intermediate layers in between lithium and LLZTO is helpful for decreasing the interfacial resistance and suppressing the growth of lithium dendrites. In this work, three kinds of intermediate layers of Au, Nb and Si with the thickness of 100 nm were prepared. Although the interfacial resistance with the Au layer decreases from 1960 to 32 Ω·cm^2, the cells can only cycle for 0.67 h at 0.5 mA·cm^-2, related to the Au peeled off from the LLZTO. The Nb layers lead to the initial interfacial resistance of 14 Ω·cm^2, while showing extension of cycle time to 50 h with the increase in interracial resistance due to the formation of the resistive Li-Nb-O phase. The Si layers induce the interfacial resistance as low as 5 Ω·cm^2 and the cycles as long as 120 h, which is attributed to the improvement in electrical contact between Li and electrolyte as well as the maintenance of conductive interface during cycles.展开更多
作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫...作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫化物薄膜(FeOxSy)具备超高功率特性.这种原位等离子体预处理可作为一种通用的界面优化策略来抑制长循环过程中的机械衰变.该正极薄膜展现出极高的功率密度和稳定的循环性能,这是由其高度的结构完整性(强大的界面粘附性和应力释放的岛)、完美的电化学可逆性以及近表面电荷交换(赝电容锂存储机制)的协同作用导致的.预处理的FeOxSy薄膜可以输出高达14.6 mW cm-2的功率密度和291μW h cm^(-2)μm^(-1)的体积能量密度.制备得到的正极薄膜的功率密度优于已报道的具有相当面积容量的溅射薄膜.本工作提出了一种简单且高效的预处理方法来制备具有超高功率密度且稳定的微电池薄膜电极.展开更多
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery^(*)”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂...该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery^(*)”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的界面受到重点关注。展开更多
硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响...硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响,因此探究不同Li_(3)PS_(4)晶体结构的合成条件及其转变过程对固态电解质的应用有重要意义.本文通过原位变温Raman和室温X射线衍射(XRD)分析发现,通过球磨法所得glass-Li_(3)PS_(4)在首次升温过程中(240℃)优先转变为亚稳态的β-Li_(3)PS_(4),此时冷却到室温能保持β相结构,并具有较高的离子电导率(0.65 mS cm^(-1)).当烧结温度继续升高(>480℃),β相会转变为离子电导率更高但热力学不稳定的α-Li_(3)PS_(4),在后续的降温过程中,α相会直接转变为热力学更稳定但离子电导率差的γ-Li_(3)PS_(4).此外,γ-Li_(3)PS_(4)和β-Li_(3)PS_(4)具有一定的结构记忆效应,即使经历二次低温烧结后(240℃)也能维持其固有的结构.以上结果表明,首次烧结温度对于Li_(3)PS_(4)材料的结构和离子电导率具有重要的影响,合理控制烧结温度能够成功制备出具有更高离子电导率的β-Li_(3)PS_(4)固态电解质.此外,所制备的β-Li_(3)PS_(4)固态电解质对锂表现出相对优异的界面性能.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51532002 and 51771222)the National Basic Research Program of China(No.2014CB921004)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR201702180185)‘‘Taishan Talent Scholar’’ Supports
文摘The garnet-type electrolytes such as Ta-doped Li7La3Zr2Ol2 (LLZTO) have been viewed as the promising electrolytes for solid-state lithium batteries, but it exhibits problem of high interfacial resistance (1960 Ω·cm^2) and short circuit when being cycled in Li/LLZTO/Li cells at the current density above 0.5 mA·cm^-2. Introduction of intermediate layers in between lithium and LLZTO is helpful for decreasing the interfacial resistance and suppressing the growth of lithium dendrites. In this work, three kinds of intermediate layers of Au, Nb and Si with the thickness of 100 nm were prepared. Although the interfacial resistance with the Au layer decreases from 1960 to 32 Ω·cm^2, the cells can only cycle for 0.67 h at 0.5 mA·cm^-2, related to the Au peeled off from the LLZTO. The Nb layers lead to the initial interfacial resistance of 14 Ω·cm^2, while showing extension of cycle time to 50 h with the increase in interracial resistance due to the formation of the resistive Li-Nb-O phase. The Si layers induce the interfacial resistance as low as 5 Ω·cm^2 and the cycles as long as 120 h, which is attributed to the improvement in electrical contact between Li and electrolyte as well as the maintenance of conductive interface during cycles.
基金supported by the Award Program for Fujian Minjiang Scholar Professorship,the National Natural Science Foundation of China(11704071 and 51871188)the Excellent Youth Foundation of Fujian Scientific Committee(2019J06008)+1 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR146)Fujian Provincial Department of Industry and Information Technology(82318075)。
文摘作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫化物薄膜(FeOxSy)具备超高功率特性.这种原位等离子体预处理可作为一种通用的界面优化策略来抑制长循环过程中的机械衰变.该正极薄膜展现出极高的功率密度和稳定的循环性能,这是由其高度的结构完整性(强大的界面粘附性和应力释放的岛)、完美的电化学可逆性以及近表面电荷交换(赝电容锂存储机制)的协同作用导致的.预处理的FeOxSy薄膜可以输出高达14.6 mW cm-2的功率密度和291μW h cm^(-2)μm^(-1)的体积能量密度.制备得到的正极薄膜的功率密度优于已报道的具有相当面积容量的溅射薄膜.本工作提出了一种简单且高效的预处理方法来制备具有超高功率密度且稳定的微电池薄膜电极.
文摘该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery^(*)”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的界面受到重点关注。
基金the National Natural Science Foundation of China(22075025)the Scienceand Technology Program of Guangdong Province(Grant No.2020B0909030004)the funding from General Research Institute for Nonferrous Metals(C712620213102034).
文摘硫化物Li_(3)PS_(4)是重要的含硫快离子导体,锂离子电导率高,机械性能优异,化学兼容性好,属于全固态电池中一类重要的固态电解质.Li_(3)PS_(4)具有多种晶体结构(玻璃态、α相、β相、γ相),而晶体结构对于材料离子电导率有决定性的影响,因此探究不同Li_(3)PS_(4)晶体结构的合成条件及其转变过程对固态电解质的应用有重要意义.本文通过原位变温Raman和室温X射线衍射(XRD)分析发现,通过球磨法所得glass-Li_(3)PS_(4)在首次升温过程中(240℃)优先转变为亚稳态的β-Li_(3)PS_(4),此时冷却到室温能保持β相结构,并具有较高的离子电导率(0.65 mS cm^(-1)).当烧结温度继续升高(>480℃),β相会转变为离子电导率更高但热力学不稳定的α-Li_(3)PS_(4),在后续的降温过程中,α相会直接转变为热力学更稳定但离子电导率差的γ-Li_(3)PS_(4).此外,γ-Li_(3)PS_(4)和β-Li_(3)PS_(4)具有一定的结构记忆效应,即使经历二次低温烧结后(240℃)也能维持其固有的结构.以上结果表明,首次烧结温度对于Li_(3)PS_(4)材料的结构和离子电导率具有重要的影响,合理控制烧结温度能够成功制备出具有更高离子电导率的β-Li_(3)PS_(4)固态电解质.此外,所制备的β-Li_(3)PS_(4)固态电解质对锂表现出相对优异的界面性能.
基金supported by the National Natural Science Foundation of China(22025507 and 21931012)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBSLYSLH020)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202010).