The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of co...The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of composition CH (theoretical graphane) (Sofo et al. 2007) and experimental graphane (Elias et al. 2009);2) theoretical single-side hydrogenated graphene of composition CH;3) theoretical single-side hydrogenated graphene of composition C2H (graphone);4) experimental hydrogenated epitaxial graphene, bilayer graphene and a few layers of graphene on SiO2 or other substrates;5) experimental and theoretical single-external side hydrogenated single-walled carbon nanotubes, and experimental hydrofullerene C60H36;6) experimental single-internal side hydrogenated (up to C2H or CH composition) graphene nanoblisters with intercalated high pressure H2 gas inside them, formed on a surface of highly oriented pyrolytic graphite or epitaxial graphene under the atomic hydrogen treatment;and 7) experimental hydrogenated graphite nanofibers-multigraphene with intercalated solid H2 nano-regions of high density inside them, relevant to solving the problem of hydrogen on-board storage (Nechaev 2011-2012).展开更多
文摘The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of composition CH (theoretical graphane) (Sofo et al. 2007) and experimental graphane (Elias et al. 2009);2) theoretical single-side hydrogenated graphene of composition CH;3) theoretical single-side hydrogenated graphene of composition C2H (graphone);4) experimental hydrogenated epitaxial graphene, bilayer graphene and a few layers of graphene on SiO2 or other substrates;5) experimental and theoretical single-external side hydrogenated single-walled carbon nanotubes, and experimental hydrofullerene C60H36;6) experimental single-internal side hydrogenated (up to C2H or CH composition) graphene nanoblisters with intercalated high pressure H2 gas inside them, formed on a surface of highly oriented pyrolytic graphite or epitaxial graphene under the atomic hydrogen treatment;and 7) experimental hydrogenated graphite nanofibers-multigraphene with intercalated solid H2 nano-regions of high density inside them, relevant to solving the problem of hydrogen on-board storage (Nechaev 2011-2012).