Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i...Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.展开更多
Two-dimensional(2D) transition metal oxide and chalcogenide(TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environm...Two-dimensional(2D) transition metal oxide and chalcogenide(TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances,which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented.展开更多
Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, hig...Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, high specific surface area, high transparency in the visible range and high mechanical flexibility. They have important application in energy conversion systems including solar cells and fuel cells. They have been extensively studied as the transparent electrode and interfacial materials of organic solar cells (OSCs) and perovskite solar cells (PSCs). They are also used as the catalytic counter electrode of dye-sensitized solar cells (DSSCs). In addition, graphene oxide (GO) is exploited as an auxiliary binder of TiO2 paste for the mesoporous TiO2 layer of DSSCs, and GO and functionalized CNTs are adopted as gelators of gel electrolyte for quasi-solid state DSSCs. CNTs and graphene also have important application in fuel cells. They can be used as catalyst support for the oxidation of fuels or oxygen reduction reaction (ORR). CNTs and graphene, particularly when doped with nitrogen, can be directly used metal-free catalysts. This article provides a brief review on the application of CNTs and graphene in OSCs, PSCs, DSSCs and fuel cells.展开更多
Solar vapor generation is emerging as a promising technology using solar energy for various applications including desalination and freshwater production.However,from the viewpoints of industrial and academic research...Solar vapor generation is emerging as a promising technology using solar energy for various applications including desalination and freshwater production.However,from the viewpoints of industrial and academic research,it remains challenging to prepare low-cost and high-efficiency photothermal materials.In this work,we report the controlled carbonization of polypropylene(PP)using NiO and poly(ionic liquid)(PIL)as combined catalysts to prepare a Ni/carbon nanomaterial(Ni/CNM).The morphology and textural property of Ni/CNM are modulated by adding a trace amount of PIL.Ni/CNM consists of cup-stacked carbon nanotubes(CS-CNTs)and pear-shaped metallic Ni nanoparticles.Due to the synergistic effect of Ni and CS-CNTs in solar absorption,Ni/CNM possesses an excellent property of photothermal conversion.Meanwhile,Ni/CNM with a high specific surface area and rich micro-/meso-/macropores constructs a threedimensional(3 D)porous network for efficient water supply and vapor channels.Thanks to high solar absorption,fast water transport,and low thermal conductivity,Ni/CNM exhibits a high water evaporation rate of 1.67 kg m^-2 h^-1,a solar-to-vapor conversion efficiency of 94.9%,and an excellent stability for 10 cycles.It also works well when converting dyecontaining water,seawater,and oil/water emulsion into healthy drinkable water.The metallic ion removal efficiency of seawater is 99.99%,and the dye removal efficiency is>99.9%.More importantly,it prevails over the-state-of-art carbonbased photothermal materials in solar energy-driven vapor generation.This work not only proposes a new sustainable approach to convert waste polymers into advanced metal/carbon hybrids,but also contributes to the fields of solar energy utilization and seawater desalination.展开更多
Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility...Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility,low cost and remarkable salt resistance.Herein,we prepare flexible,robust solar membranes by filtration of porous carbon and commercial paper pulp fiber.The porous carbon with well-defined structures is prepared through controlled carbonization of biomass/waste plastics by eutectic salts.We prove the synergistic effect of porous carbon and paper pulp fiber in boosting solar evaporation performance.Firstly,the porous carbon displays a high light absorption,while the paper pulp fiber with good hydrophilicity effectively promotes the transport of water.Secondly,the combination between porous carbon and paper pulp fiber reduces the water vaporization enthalpy by 20%,which is important to significantly improve the evaporation performance.As a proof of concept,the porous carbon/paper pulp fiber membrane possesses a high evaporation rate of 1.8 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation.Thirdly,the good flexibility and mechanical property of paper pulp fiber enable the solar membrane to work well under extreme conditions(e.g.,after 20 cycles of folding/stretching/recovery).Lastly,due to the super-hydrophilicity and superwetting,the hybrid membrane exhibits the exceptional salt resistance and long-term stability in continuous seawater desalination,e.g.,for 50 h.Importantly,a large-scale solar desalination device for outdoor experiments is developed to produce freshwater.Consequently,this work provides a new insight into developing advanced flexible solar evaporators with superb performance in seawater desalination.展开更多
Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the d...Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.展开更多
Solar powered steam generation is an emerging area in the field o f energy harvest and sustainable technologies.The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and co...Solar powered steam generation is an emerging area in the field o f energy harvest and sustainable technologies.The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency.Moreover,the materials and structures for heat management as well as the mass transportation are also brought to the forefront.Several groups have reported their materials and structures as solutions for high performance devices,a few creatively coupled other physical fields with solar energy to achieve even better results.This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery,material selection,structural design and mass/heat management,as well as their applications in seawater desalination and fresh water production from waste water with free solar energy.It also discusses current technical challenges and likely future developments.This article will help to stimulate novel ideas and new designs for the photothermal materials,towards efficient,low cost practical solar-driven clean water production.展开更多
基金supported in part by the National Natural Science Foundation of China (No. 51977087)in part by the Science and Technology Project of State Grid Corporation of China (No. 1400-202199550A-0-5-ZN)。
文摘Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.
基金the fund received from the Australian Research Council (DE160100715)
文摘Two-dimensional(2D) transition metal oxide and chalcogenide(TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances,which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented.
基金financially supported by a research grant from the Ministry of Education - Singapore (R-284-000-147-112)
文摘Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, high specific surface area, high transparency in the visible range and high mechanical flexibility. They have important application in energy conversion systems including solar cells and fuel cells. They have been extensively studied as the transparent electrode and interfacial materials of organic solar cells (OSCs) and perovskite solar cells (PSCs). They are also used as the catalytic counter electrode of dye-sensitized solar cells (DSSCs). In addition, graphene oxide (GO) is exploited as an auxiliary binder of TiO2 paste for the mesoporous TiO2 layer of DSSCs, and GO and functionalized CNTs are adopted as gelators of gel electrolyte for quasi-solid state DSSCs. CNTs and graphene also have important application in fuel cells. They can be used as catalyst support for the oxidation of fuels or oxygen reduction reaction (ORR). CNTs and graphene, particularly when doped with nitrogen, can be directly used metal-free catalysts. This article provides a brief review on the application of CNTs and graphene in OSCs, PSCs, DSSCs and fuel cells.
基金supported by the Initiatory Financial Support from the Huazhong University of Science and Technology(3004013134)the National Natural Science Foundation of China(51903099)+1 种基金the Opening Fund of Hubei Key Laboratory of Material Chemistry and Service Failure(2019MCF01)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences.
文摘Solar vapor generation is emerging as a promising technology using solar energy for various applications including desalination and freshwater production.However,from the viewpoints of industrial and academic research,it remains challenging to prepare low-cost and high-efficiency photothermal materials.In this work,we report the controlled carbonization of polypropylene(PP)using NiO and poly(ionic liquid)(PIL)as combined catalysts to prepare a Ni/carbon nanomaterial(Ni/CNM).The morphology and textural property of Ni/CNM are modulated by adding a trace amount of PIL.Ni/CNM consists of cup-stacked carbon nanotubes(CS-CNTs)and pear-shaped metallic Ni nanoparticles.Due to the synergistic effect of Ni and CS-CNTs in solar absorption,Ni/CNM possesses an excellent property of photothermal conversion.Meanwhile,Ni/CNM with a high specific surface area and rich micro-/meso-/macropores constructs a threedimensional(3 D)porous network for efficient water supply and vapor channels.Thanks to high solar absorption,fast water transport,and low thermal conductivity,Ni/CNM exhibits a high water evaporation rate of 1.67 kg m^-2 h^-1,a solar-to-vapor conversion efficiency of 94.9%,and an excellent stability for 10 cycles.It also works well when converting dyecontaining water,seawater,and oil/water emulsion into healthy drinkable water.The metallic ion removal efficiency of seawater is 99.99%,and the dye removal efficiency is>99.9%.More importantly,it prevails over the-state-of-art carbonbased photothermal materials in solar energy-driven vapor generation.This work not only proposes a new sustainable approach to convert waste polymers into advanced metal/carbon hybrids,but also contributes to the fields of solar energy utilization and seawater desalination.
基金financially supported by the National Natural Science Foundation of China(51903099 and 51991353)Huazhong University of Science and Technology(3004013134 and 2021XXJS036)+1 种基金the 100 Talents Program of the Hubei Provincial Governmentthe Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003).
文摘Solar evaporation has emerged as an attractive technology to produce freshwater by utilizing renewable solar energy.However,it remains a huge challenge to develop efficient solar steam generators with good flexibility,low cost and remarkable salt resistance.Herein,we prepare flexible,robust solar membranes by filtration of porous carbon and commercial paper pulp fiber.The porous carbon with well-defined structures is prepared through controlled carbonization of biomass/waste plastics by eutectic salts.We prove the synergistic effect of porous carbon and paper pulp fiber in boosting solar evaporation performance.Firstly,the porous carbon displays a high light absorption,while the paper pulp fiber with good hydrophilicity effectively promotes the transport of water.Secondly,the combination between porous carbon and paper pulp fiber reduces the water vaporization enthalpy by 20%,which is important to significantly improve the evaporation performance.As a proof of concept,the porous carbon/paper pulp fiber membrane possesses a high evaporation rate of 1.8 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation.Thirdly,the good flexibility and mechanical property of paper pulp fiber enable the solar membrane to work well under extreme conditions(e.g.,after 20 cycles of folding/stretching/recovery).Lastly,due to the super-hydrophilicity and superwetting,the hybrid membrane exhibits the exceptional salt resistance and long-term stability in continuous seawater desalination,e.g.,for 50 h.Importantly,a large-scale solar desalination device for outdoor experiments is developed to produce freshwater.Consequently,this work provides a new insight into developing advanced flexible solar evaporators with superb performance in seawater desalination.
基金financially supported by the National Natural Science Foundation of China(52192610)the National Key Research and Development Program of China(Grant 2021YFA0715600)+1 种基金the Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University。
文摘Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
文摘Solar powered steam generation is an emerging area in the field o f energy harvest and sustainable technologies.The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency.Moreover,the materials and structures for heat management as well as the mass transportation are also brought to the forefront.Several groups have reported their materials and structures as solutions for high performance devices,a few creatively coupled other physical fields with solar energy to achieve even better results.This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery,material selection,structural design and mass/heat management,as well as their applications in seawater desalination and fresh water production from waste water with free solar energy.It also discusses current technical challenges and likely future developments.This article will help to stimulate novel ideas and new designs for the photothermal materials,towards efficient,low cost practical solar-driven clean water production.