全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全...全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。展开更多
铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁...铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁含量之间的相关性,探讨间接估算土壤有效铁含量的可行性。以庐山森林土壤样本为研究对象,研究基于偏最小二乘回归(PLSR)和径向基函数(RBF)神经网络的组合模型预测土壤有机质含量的适用性,并且通过构建有机质含量与有效铁含量的二项式线性模型,对土壤有效铁含量进行间接反演,探讨不同权重下的最优组合模型。结果表明,组合模型的预测效果优于偏最小二乘回归和RBF神经网络单个模型,并且熵值组合为最优组合模型,其中,土壤有机质的反演模型验证的决定系数(R^2)为0.81,均方根误差(RMSE_p)为11.54 g kg^(-1),测定值标准差与标准预测误差的比值(RPD)为2.18;有效铁的间接反演模型R^2为0.70,RMSE_p为21.60 mg kg^(-1),RPD为1.77。通过土壤有机质构建土壤有效铁含量的光谱反演间接模型,在光谱反演模型中,组合模型能较大限度地利用各种预测样本信息,能有效减少单个预测模型中随机因素的影响,增强预测稳定性,提高模型的预测能力。因此,组合模型可对土壤有机质含量的光谱预测及土壤有效铁的间接预测发挥更好的作用。展开更多
土壤含水量的时空分布与变化情况对土壤温度变化、陆地—大气间热量平衡以及陆面大气环流产生显著的影响,因此,对大范围内土壤含水量进行实时动态监测,获得某段时间内土壤含水量的连续变化情况具有重要的意义。研究目的是借助高光谱遥...土壤含水量的时空分布与变化情况对土壤温度变化、陆地—大气间热量平衡以及陆面大气环流产生显著的影响,因此,对大范围内土壤含水量进行实时动态监测,获得某段时间内土壤含水量的连续变化情况具有重要的意义。研究目的是借助高光谱遥感手段,通过构建不同质量含水量的土壤反射率光谱模拟模型,深入了解土壤质量含水量与土壤反射率光谱之间的关系,为监测土壤含水量提供有效手段。利用ASD Field Spectral FR野外光谱仪和加水称重法获得北京市8个采样点的土壤样品不同质量含水量下的土壤反射率光谱实测数据,利用其中2个土壤样品不同质量含水量下的光谱数据构建含水土壤反射率光谱模拟模型,并利用未参与建模的另外6个土壤样品数据对该模型的模拟效果进行了检验。通过数据验证发现,当土壤质量含水量小于田间持水量时,该模型的模拟精度较高;而且对于不同的土壤样品,模型的模拟效果都比较好。最后又利用北京大学校园内三个采样点的实地测量光谱数据对模型进行了验证,光谱的模拟值与实测值之间的均方根误差最小可达0.005 8。因此该模型可实现对质量含水量小于田间持水量的不同类型土壤的反射率光谱进行较高精度的模拟。展开更多
文摘全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。
文摘铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁含量之间的相关性,探讨间接估算土壤有效铁含量的可行性。以庐山森林土壤样本为研究对象,研究基于偏最小二乘回归(PLSR)和径向基函数(RBF)神经网络的组合模型预测土壤有机质含量的适用性,并且通过构建有机质含量与有效铁含量的二项式线性模型,对土壤有效铁含量进行间接反演,探讨不同权重下的最优组合模型。结果表明,组合模型的预测效果优于偏最小二乘回归和RBF神经网络单个模型,并且熵值组合为最优组合模型,其中,土壤有机质的反演模型验证的决定系数(R^2)为0.81,均方根误差(RMSE_p)为11.54 g kg^(-1),测定值标准差与标准预测误差的比值(RPD)为2.18;有效铁的间接反演模型R^2为0.70,RMSE_p为21.60 mg kg^(-1),RPD为1.77。通过土壤有机质构建土壤有效铁含量的光谱反演间接模型,在光谱反演模型中,组合模型能较大限度地利用各种预测样本信息,能有效减少单个预测模型中随机因素的影响,增强预测稳定性,提高模型的预测能力。因此,组合模型可对土壤有机质含量的光谱预测及土壤有效铁的间接预测发挥更好的作用。
文摘土壤含水量的时空分布与变化情况对土壤温度变化、陆地—大气间热量平衡以及陆面大气环流产生显著的影响,因此,对大范围内土壤含水量进行实时动态监测,获得某段时间内土壤含水量的连续变化情况具有重要的意义。研究目的是借助高光谱遥感手段,通过构建不同质量含水量的土壤反射率光谱模拟模型,深入了解土壤质量含水量与土壤反射率光谱之间的关系,为监测土壤含水量提供有效手段。利用ASD Field Spectral FR野外光谱仪和加水称重法获得北京市8个采样点的土壤样品不同质量含水量下的土壤反射率光谱实测数据,利用其中2个土壤样品不同质量含水量下的光谱数据构建含水土壤反射率光谱模拟模型,并利用未参与建模的另外6个土壤样品数据对该模型的模拟效果进行了检验。通过数据验证发现,当土壤质量含水量小于田间持水量时,该模型的模拟精度较高;而且对于不同的土壤样品,模型的模拟效果都比较好。最后又利用北京大学校园内三个采样点的实地测量光谱数据对模型进行了验证,光谱的模拟值与实测值之间的均方根误差最小可达0.005 8。因此该模型可实现对质量含水量小于田间持水量的不同类型土壤的反射率光谱进行较高精度的模拟。