Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haa...Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when m展开更多
Phosphorus (P) fertilization is frequently needed for profitable crop production. Modified Morgan P (MMP) is a soil test P used to estimate plant available P in soils. The critical values of MMP for P fertilization an...Phosphorus (P) fertilization is frequently needed for profitable crop production. Modified Morgan P (MMP) is a soil test P used to estimate plant available P in soils. The critical values of MMP for P fertilization and maintenance recommendations are based on the P concentrations measured by a common colorimetric molybdenum blue method although other P quantification methods have also been used for MMP measurements. In this study, we collected 120 surface soil samples of Caribou Sandy loam under potato cultivation or its rotation crops from Maine, USA, and 72 soil samples of Cecil sandy loam with cotton/corn crops under conventional tillage and no-till management with chemical and poultry litter fertilization in Georgia, USA. The MMP levels in all 192 dry samples were greater when they were measured by an inductively coupled plasma (ICP)-based method, compared to the corresponding data produced from colorimetry. Our results show the two sets of data were positively and significantly correlated (r = 0.93, P –1 with standard deviation of 12.9, compared to the average of colorimetric MMP level of 14.9 mg P kg–1 with standard deviation of 8.8. Based on the observations in this work, both colorimetric and ICP-based methods can be used for P fertilizer recommendation, but a conversion factor should be applied for ICP data as the current recommendation systems are based on colorimetric M&R data.展开更多
Phosphorus is an essential nutrient for plant growth but in excess is a source of environmental pollution. Fertilizer additions of P are recommended based on soil tests;however, the commonly applied P extractants are ...Phosphorus is an essential nutrient for plant growth but in excess is a source of environmental pollution. Fertilizer additions of P are recommended based on soil tests;however, the commonly applied P extractants are often applied outside of their design criteria (specifically soil pH). As a result, soil tests can produce inaccurate estimates of plant available P in the soil, which either increases P loss in runoff, contributing to eutrophication, or decreases crop production contributing to economic loss. In this study, 200 diverse soils from across the US were extracted with Mehlich 3, water, H3A-3, and FeAlO strips. Comparison with FeAlO was critical, as this method is accepted as the “gold standard” for plant-available P, but it is rarely used in commercial labs because of time and financial constraints. H3A-3 produced mean, median, standard deviations that are very similar to FeAlO strip results and low relative errors (<10%), as well as highly correlated regression relationships (r<sup>2</sup> > 0.96 with slopes 0.95 - 0.98). Although Mehlich 3 and water were correlated with FeAlO, Mehlich 3 (strongly acidic) extracted much more P than FeAlO, and water (low buffering capacity) extracted much less P across the range of soil pH values. Thus, H3A-3 provides an improved methodology to accurately determine plant-available P by mimicking root exudate action in the soil, while avoiding the time-consuming and costly FeAlO procedure. In the face of high-profile water quality impairments with enormous economic costs, such advancements are critical to balance agronomic production with environmental concerns.展开更多
文摘Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when m
文摘Phosphorus (P) fertilization is frequently needed for profitable crop production. Modified Morgan P (MMP) is a soil test P used to estimate plant available P in soils. The critical values of MMP for P fertilization and maintenance recommendations are based on the P concentrations measured by a common colorimetric molybdenum blue method although other P quantification methods have also been used for MMP measurements. In this study, we collected 120 surface soil samples of Caribou Sandy loam under potato cultivation or its rotation crops from Maine, USA, and 72 soil samples of Cecil sandy loam with cotton/corn crops under conventional tillage and no-till management with chemical and poultry litter fertilization in Georgia, USA. The MMP levels in all 192 dry samples were greater when they were measured by an inductively coupled plasma (ICP)-based method, compared to the corresponding data produced from colorimetry. Our results show the two sets of data were positively and significantly correlated (r = 0.93, P –1 with standard deviation of 12.9, compared to the average of colorimetric MMP level of 14.9 mg P kg–1 with standard deviation of 8.8. Based on the observations in this work, both colorimetric and ICP-based methods can be used for P fertilizer recommendation, but a conversion factor should be applied for ICP data as the current recommendation systems are based on colorimetric M&R data.
文摘Phosphorus is an essential nutrient for plant growth but in excess is a source of environmental pollution. Fertilizer additions of P are recommended based on soil tests;however, the commonly applied P extractants are often applied outside of their design criteria (specifically soil pH). As a result, soil tests can produce inaccurate estimates of plant available P in the soil, which either increases P loss in runoff, contributing to eutrophication, or decreases crop production contributing to economic loss. In this study, 200 diverse soils from across the US were extracted with Mehlich 3, water, H3A-3, and FeAlO strips. Comparison with FeAlO was critical, as this method is accepted as the “gold standard” for plant-available P, but it is rarely used in commercial labs because of time and financial constraints. H3A-3 produced mean, median, standard deviations that are very similar to FeAlO strip results and low relative errors (<10%), as well as highly correlated regression relationships (r<sup>2</sup> > 0.96 with slopes 0.95 - 0.98). Although Mehlich 3 and water were correlated with FeAlO, Mehlich 3 (strongly acidic) extracted much more P than FeAlO, and water (low buffering capacity) extracted much less P across the range of soil pH values. Thus, H3A-3 provides an improved methodology to accurately determine plant-available P by mimicking root exudate action in the soil, while avoiding the time-consuming and costly FeAlO procedure. In the face of high-profile water quality impairments with enormous economic costs, such advancements are critical to balance agronomic production with environmental concerns.