期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于BERT模型的中文短文本分类算法 被引量:73
1
作者 段丹丹 唐加山 +1 位作者 温勇 袁克海 《计算机工程》 CAS CSCD 北大核心 2021年第1期79-86,共8页
针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer的双向编码器表示(BERT)的中文短文本分类算法,使用BERT预训练语言模型对短文本进行句子层面的特征向量表示,并将获得的特征向量输入S... 针对现有中文短文本分类算法通常存在特征稀疏、用词不规范和数据海量等问题,提出一种基于Transformer的双向编码器表示(BERT)的中文短文本分类算法,使用BERT预训练语言模型对短文本进行句子层面的特征向量表示,并将获得的特征向量输入Softmax回归模型进行训练与分类。实验结果表明,随着搜狐新闻文本数据量的增加,该算法在测试集上的整体F1值最高达到93%,相比基于TextCNN模型的短文本分类算法提升6个百分点,说明其能有效表示句子层面的语义信息,具有更好的中文短文本分类效果。 展开更多
关键词 中文短文本分类 基于Transformer的双向编码器表示 softmax回归模型 TextCNN模型 word2vec模型
下载PDF
基于主成分分析和Softmax回归模型的人脸识别方法 被引量:29
2
作者 汪海波 陈雁翔 李艳秋 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期759-763,共5页
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网... 文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。 展开更多
关键词 人脸识别 主成分分析 softmax回归模型 神经网络
下载PDF
基于MFCC和常数Q变换的乐器音符识别 被引量:10
3
作者 陈燕文 李坤 +1 位作者 韩焱 王燕平 《计算机科学》 CSCD 北大核心 2020年第3期149-155,共7页
音符识别是音乐信号分析处理领域内非常重要的研究内容,它为计算自动识谱、乐器调音、音乐数据库检索和电子音乐合成提供技术基础。传统的音符识别方法通过估计音符基频与标准频率进行一一对应识别。然而一一对应较为困难,且随着音符基... 音符识别是音乐信号分析处理领域内非常重要的研究内容,它为计算自动识谱、乐器调音、音乐数据库检索和电子音乐合成提供技术基础。传统的音符识别方法通过估计音符基频与标准频率进行一一对应识别。然而一一对应较为困难,且随着音符基频的增大将导致误差增大,可识别的音符基频范围不广。为此,文中采用分类的思想进行音符识别。首先,建立所需识别的音符音频库,并针对音乐信号低频信息的重要性,选取梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)和常数Q变换(Constant Q Transform,CQT)作为音符信号提取特征。然后,将提取的特征MFCC和CQT分别作为音符识别的单一特征输入和两者特征融合输入;结合Softmax回归模型在多分类问题中的优势以及BP神经网络良好的非线性映射能力与自学习能力,构建基于Softmax回归模型的BP神经网络多分类识别器。在MATLAB R2016a的仿真环境下,将特征参数输入到多分类器中进行学习与训练,通过调整网络参数来寻找最优解。通过改变训练样本数进行对比实验。实验结果表明,将融合特征(MFCC+CQT)作为特征输入时,可以识别出从大字组到小字三组的25类音符,并可以获得95.6%的平均识别率;在识别过程中,特征CQT比特征MFCC的贡献更大。实验数据充分说明,利用分类的思想提取音符信号的MFCC和CQT特征来进行音符识别,可以取得很好的识别效果,并且不受音符基频范围的限制。 展开更多
关键词 音符库 MFCC 常数Q变换 特征融合 softmax回归模型 BP神经网络
下载PDF
基于Softmax回归在复杂地形条件下的降水相态预报模型——以山西省晋中市为例
4
作者 余丽萍 郭彩萍 +3 位作者 周雅清 胡桃花 杨青 马丽 《中南农业科技》 2024年第2期111-116,共6页
利用2000—2018年山西省晋中市常规地面观测资料对当地降水相态时空分布特征进行统计分析,用ERA5再分析资料在显著性检验基础上筛选出与降水相态相关性较强的物理量参数,以筛选出的物理量作为特征数据,采用k-聚类法对晋中市进行区域划分... 利用2000—2018年山西省晋中市常规地面观测资料对当地降水相态时空分布特征进行统计分析,用ERA5再分析资料在显著性检验基础上筛选出与降水相态相关性较强的物理量参数,以筛选出的物理量作为特征数据,采用k-聚类法对晋中市进行区域划分,基于Softmax回归方法分别建立不同区域的降水相态分类预报模型。结果表明,晋中市发生雨雪转换日最多的是3月,其次为11月,4月、11月更容易发生液态降水向固态降水的转换;筛选出与降水相态相关性较强的3个物理量参数分别是T_(850hPa)、T_(0)和H_(700~850hPa),相变日数有明显的地域差异;第二区域和第三区域的模型预测精度均高于不进行区域划分的模型精度,说明进行区域划分再建模可在一定程度上提高模型的预报准确率。 展开更多
关键词 降水相态预报 softmax回归模型 k-聚类 区域划分 山西省晋中市
下载PDF
基于Softmax回归模型的骨龄X射线图像手骨分割 被引量:5
5
作者 刘蕊 贾媛媛 +3 位作者 贺向前 李哲 蔡金华 李昊 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第9期73-83,共11页
针对儿童青少年的骨骼发育情况,临床上常采用手腕骨X射线图像进行骨龄评估。其中手骨区域的分割是预处理中的关键一步,手骨分割的准确率极大地影响最后的评估结果。传统的阈值分割方法在自动化分割过程中鲁棒性较差,利用深度神经网络的... 针对儿童青少年的骨骼发育情况,临床上常采用手腕骨X射线图像进行骨龄评估。其中手骨区域的分割是预处理中的关键一步,手骨分割的准确率极大地影响最后的评估结果。传统的阈值分割方法在自动化分割过程中鲁棒性较差,利用深度神经网络的自动分割准确率比传统方法高但较为复杂。研究在阈值分割的基础上,提出先通过训练Softmax回归模型预测最佳阈值得到二值图像,再利用区域生长法提取完整手形,最后对手骨图像进行归一化处理的分割方法。在100张临床数据测试集上,将提出的方法与传统的阈值分割方法--Otsu、最大熵阈值和直方图均值分割方法进行对比,采用相似系数DSC(dice similarity coefficient)、欠分割率和过分割率3个客观评价指标对分割结果进行定量分析。实验证明该方法的分割效果最理想,平均DSC值为0.97,欠分割率和过分割率接近于0,对于复杂的手骨图像也表现出良好的分割性能,相比传统的阈值分割方法具有更好的鲁棒性,能够准确的对骨龄X射线图像进行自动化手骨分割处理。 展开更多
关键词 骨龄评估 手骨分割 softmax回归模型 最佳阈值 区域生长 鲁棒性
下载PDF
基于Softmax回归模型的地震灾害损失预测评估研究 被引量:3
6
作者 李云飞 许才顺 +1 位作者 池招招 张飞 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第12期1676-1681,共6页
文章在对地震灾害损失进行等级划分基础上,提出一种利用Softmax回归模型对地震灾害损失进行评估预测的方法。该方法以我国2005—2017年的全国地震数据作为样本集,将震级、震源深度、震中烈度、抗震设防烈度、设计基本地震加速度、灾区人... 文章在对地震灾害损失进行等级划分基础上,提出一种利用Softmax回归模型对地震灾害损失进行评估预测的方法。该方法以我国2005—2017年的全国地震数据作为样本集,将震级、震源深度、震中烈度、抗震设防烈度、设计基本地震加速度、灾区人均GDP、灾区人口、受灾面积等数据作为特征参数,在Softmax回归损失函数中加入权重衰减项后运用梯度下降算法进行求解,采用最小损失函数值对应的模型参数来构建Softmax回归模型,对地震灾害损失等级进行评估和预测。研究结果表明,与支持向量机(support vector machine,SVM)和传统逆向传播(back propagation,BP)神经网络相比,该方法具有更高的地震灾害损失预测精度和能力,其测试精度达到78.571%。 展开更多
关键词 softmax回归模型 BP神经网络 支持向量机(SVM) 地震灾害 损失预测
下载PDF
基于聚类识别的极化SAR图像分类 被引量:3
7
作者 魏志强 毕海霞 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2795-2803,共9页
该文提出一种基于判别式聚类框架的非监督极化SAR图像分类算法,利用判别式监督分类技术实现非监督聚类。为实现该算法,定义了一个结合softmax回归模型和马尔科夫随机场光滑性约束的能量函数。该模型中,像素类标和分类器均为需要优化的... 该文提出一种基于判别式聚类框架的非监督极化SAR图像分类算法,利用判别式监督分类技术实现非监督聚类。为实现该算法,定义了一个结合softmax回归模型和马尔科夫随机场光滑性约束的能量函数。该模型中,像素类标和分类器均为需要优化的未知变量。该算法从基于目标极化分解和K-Wishart极化统计分布而产生的初始化类标开始,交替迭代优化分类器和类标的能量函数,从而实现对分类器和类标的求解。真实极化SAR数据上的实验结果证明了该算法的有效性和先进性。 展开更多
关键词 极化SAR图像分类 判别式聚类 马尔科夫随机场 softmax回归模型
下载PDF
结合有监督联合一致性自编码器的跨音视频说话人标注 被引量:2
8
作者 柳欣 李鹤洋 +1 位作者 钟必能 杜吉祥 《电子与信息学报》 EI CSCD 北大核心 2018年第7期1635-1642,共8页
跨模态说话人标注旨在利用说话人的不同生物特征进行相互匹配和互标注,可广泛应用于各种人机交互场合。针对人脸和语音两种不同模态生物特征之间存在明显的"语义鸿沟"问题,该文提出一种结合有监督联合一致性自编码器的跨音视... 跨模态说话人标注旨在利用说话人的不同生物特征进行相互匹配和互标注,可广泛应用于各种人机交互场合。针对人脸和语音两种不同模态生物特征之间存在明显的"语义鸿沟"问题,该文提出一种结合有监督联合一致性自编码器的跨音视频说话人标注方法。首先分别利用卷积神经网络和深度信念网络分别对人脸图像和语音数据进行判别性特征提取,接着在联合自编码器模型的基础上,提出一种新的有监督跨模态神经网络模型,同时嵌入softmax回归模型以保证模态间和模态内样本的相似性,进而扩展为3种有监督一致性自编码器神经网络模型来挖掘音视频异构特征之间的潜在关系,从而有效实现人脸和语音的跨模态相互标注。实验结果表明,该文提出的网络模型能够有效的对说话人进行跨模态标注,效果显著,取得了对姿态变化和样本多样性的鲁棒性。 展开更多
关键词 跨模态说话人标注 有监督联合自编码器 softmax回归模型 有监督神经网络模型
下载PDF
基于人工神经网络的音符识别研究 被引量:1
9
作者 侯清睿 安冬 《自动化与仪器仪表》 2022年第1期53-58,共6页
针对音符识别准确率不高的问题,提出一种基于人工神经网络的音符识别方法。为提高识别准确率,首先采用归一化和汉明窗方法对音频信号进行预处理,然后采用CQT和MFCC分别提取频域特征和倒频域特征;利用BP神经网络和Softmax回归模型,提出So... 针对音符识别准确率不高的问题,提出一种基于人工神经网络的音符识别方法。为提高识别准确率,首先采用归一化和汉明窗方法对音频信号进行预处理,然后采用CQT和MFCC分别提取频域特征和倒频域特征;利用BP神经网络和Softmax回归模型,提出Softmax回归结合BP神经网络音符识别模型,并构建音符识别分类器;最后通过MATLAB R2016a作为仿真软件,在自构音符库的基础上,对音符进行识别。结果表明,在CQT和MFCC共同提取特征和不同样本数量下,本研究构建的音符识别器的识别率都高于93%,且与其他参考文献的识别率相比,本研究算法也具有明显优势。由此说明,本研究构建的音符特征提取与识别方案可行。 展开更多
关键词 音符识别 softmax回归模型 BP神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部