The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequal...In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.展开更多
Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence erro...Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.展开更多
For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. I...For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.展开更多
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金Supported by NSFC(10471047)NSF Guangdong Province(05300159).
文摘In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
基金This work is supported in part by NSERC (Canada)Chinese National key Basic Research Special Fund (No. G1998020322)SRF for ROCS, SEM.
文摘Presents a study which formulated a new high-order time-stepping finite element method based upon the high-order numerical integration formula for Sobolev equations. Derivation of the optimal and superconvergence error estimates; Error estimates of convergence and superconvergence for the time-continuous finite element method; Details of the global superconvergence for the semi-discrete scheme.
基金Acknowldgements. The authors would like to express their sincere thanks to the editor and referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. We also would like to thank Dr. Xiu Ye for useful discussions. The first author's research is partially supported by the Natural Science Foundation of Shandong Province of China grant ZR2013AM023, the Project Funded by China Postdoctoral Science Foundation no. 2014M560547, the Fundamental Research Funds of Shandong University no. 2015JC019, and NSAF no. U1430101.
文摘For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.