Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in...Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.展开更多
The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-po...The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.展开更多
基金This work was supported by the National Natural Science Foundation of China(41361012)the Postgraduate Research and Innovation Funding Project of Inner Mongolia Autonomous Region(B2018111951).
文摘Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.
基金National Natural Science Foundation of China(No.51867013)。
文摘The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.