Anisotropic materials are of considerable interest because of their unique combination of polarization- or direction-dependent electrical, optical, and thermoelectric properties. Low-symmetry two-dimensional (2D) ma...Anisotropic materials are of considerable interest because of their unique combination of polarization- or direction-dependent electrical, optical, and thermoelectric properties. Low-symmetry two-dimensional (2D) materials formed by van der Waals stacking of covalently bonded atomic layers are inherently anisotropic. Layered SnSe exhibits a low degree of lattice symmetry, with a distorted NaC1 structure and an in-plane anisotropy. Here we report a systematic study of the in-plane anisotropic properties in layered SnSe, using angle-resolved Raman scattering, optical absorption, and electrical transport studies. The optical and electrical characterization was direction-dependent, and successfully identified the crystalline orientation in the layered SnSe. Furthermore, the dependence of Raman-intensity anisotropy on the SnSe flake thickness and the excitation wavelength were investigated by both experiments and theoretical calculations. Finally, the electrical transport studies demonstrated that few-layer SnSe field- effect transistors (FETs) have a large anisotropic ratio of carrier mobility (N 5.8) bet- ween the armchair and zigzag directions, which is a record high value reported for 2D anisotropic materials. The highly-anisotropic properties of layered SnSe indicate considerable promise for anisotropic optics, electronics, and optoelectronics.展开更多
Two-dimensional layered IV-VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable syn...Two-dimensional layered IV-VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV-VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV-VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from I to 6 Dm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity.展开更多
Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries andhybrid capacitors.However,synergistically tailoring the electrical conductivity and str...Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries andhybrid capacitors.However,synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durablesodium-ion storages remains challenging to date for its practical applications.Herein,metal-organic framework(MOF)derived SnSe/C wrappedwithin nitrogen-doped graphene(NG@SnSe/C)is designed targeting durable sodium-ion storage.NG@SnSe/C possesses favorable electricalconductivity and structure stability due to the"inner"carbon framework from the MOF thermal treatment and"outer"graphitic cage from thedirect chemical vapor deposition synthesis.Consequently,NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g^-1 at 0.05 A·g^1,a favorable rate performance of 287.8 mAh·g^1 at 5 A·g^1 and a superior cycle stability with a negligible capacity decay of 0.016%percycle over 3,200 cycles at 0.4 A·g^1.Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/Cstructure and improve the electrical conductivity.The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-raydiffraction/ex-s/tu transmission electron microscopy.Furthermore,assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/Canode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg^-1/5,742 W·kg^-1,holding promise for next-generationen ergy storages.展开更多
It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be...It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be interpreted by including multiple valence bands.To better estimate the potential performance,we proposed the transport properties for p-type SnSe crystals and analyzed the weighted mobility from the experimental results.The weighted mobility approaches~600 cm^(2)V1s1 when the carrier concentration is as high as~6.31019 cm3.Combined with obtained lattice thermal conductivity,through rising carrier concentration,the quality factor B possesses significant improvements of~235%and 138%at 300 K and 773 K,respectively.Through comparing weighted mobility and Hall mobility,two effective mass values~0.9 me and 1.8 me can be derived using carrier concentrations.It is expected that the ZT~1.0 at 300K and ZT~2.9 at 773 K can be obtained when the carrier concentration of~8.01019 cm3 and the effective mass~1.8 me were selected.This work provides an alternative way to comprehend the performance optimization in thermoelectric community.展开更多
SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especia...SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and electrical conductivity. We firstly attempted to explain and verify the difference in the electrical conductivity as a function of temperature between p-type crystalline and polycrystalline SnSe by considering the grain boundary effects in the polycrystalline samples. On the basis of 2% Na doping to optimize the carrier concentration, the carrier mobility is improved by further introducing In, leading to enhanced carrier mobility from 3 to 9 cm2·V^(-1)·s^(-1) in polycrystalline SnSe. Moreover, In doping introduces extra resonant levels in SnSe, which increases the density of states near Fermi level and leads to an enhanced band effective mass. Large Seebeck coefficient of ~205 l V·K^(-1) at 300 K and maximum power factor of ~7.5 l W·cm^(-1)·K^(-2) at 773 K can be obtained in the Sn_(0.975)Na_(0.02)In_(0.005) Se sample,leading to a competitively high dimensionless figure of merit(ZT) value exceeding 1.1 at 773 K.展开更多
Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed b...Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of -0.74 at 773 K for SnSe + 1.0%AgzSe in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.展开更多
The emerging two-terminal memristor with a conductance-adjustable function under external stimulation is considered a strong candidate for use in artificial memory and electronic synapses. However, the stability, unif...The emerging two-terminal memristor with a conductance-adjustable function under external stimulation is considered a strong candidate for use in artificial memory and electronic synapses. However, the stability, uniformity, and power consumption of memristors are still challenging in neuromorphic computing. Here an Au/SnSe/graphene/SiO_(2)/Si memristor was fabricated, incorporating two-dimensional graphene with high thermal conductivity. The device not only exhibits excellent electrical characteristics(e.g., high stability,good uniformity and a high ROFF/RON ratio), but also can implement biological synaptic functions such as paired-pulse facilitation, short-term plasticity and long-term plasticity. Its set and reset power values can be as low as 16.7 and 2.3 nW,respectively. Meanwhile, the resistance switching mechanism for the device, which might be associated with the formation and rupture of a filamentary conducting path consisting of Sn vacancies, was confirmed by high-resolution transmission electron microscopy observations. The proposed device is an excellent candidate for use in high-density storage and lowpower neuromorphic computing applications.展开更多
The Sn Se nanoparticles encapsulated in the carbon nanofibers(Sn Se@C)with microrod morphology and core-shell structure are prepared by electrospinning and annealing process,and investigated as anode materials for sod...The Sn Se nanoparticles encapsulated in the carbon nanofibers(Sn Se@C)with microrod morphology and core-shell structure are prepared by electrospinning and annealing process,and investigated as anode materials for sodium ion batteries.Benefiting from this unique structure,the Sn Se@C can deliver a reversible capacity of 283.8 m Ah g^(-1) after 500 cycles at a high current density of 1.0 A g^(-1).The sodium ion storage mechanisms of Sn Se are further characterized by ex-situ X-ray diffraction,high-resolution transmission electron microscope and selected area electron diffraction measurements.Besides,the excellent electrochemical performance of the electrodes is investigated by pseudocapacitance and in situ electrochemical impedance spectroscopy measurements.This work may provide a new avenue for synthesis of metal selenides with core-shell structure and a good idea for studying the kinetics process.展开更多
The outstanding thermoelectric material, SnSe, is also known for its inferior mechanical properties, which bring great inconvenience for its application in thermoelectric devices. In this work, SnSe bulks were prepare...The outstanding thermoelectric material, SnSe, is also known for its inferior mechanical properties, which bring great inconvenience for its application in thermoelectric devices. In this work, SnSe bulks were prepared via a sequential procedure of high-pressure synthesis (HPS), ball milling, and spark plasma sintering (SPS). The produced polycrystalline samples with a unique microstructure of tightly-bound quasi-equiaxed grains exhibited excellent mechanical properties. The Vickers hardness (HV), compressive strength (σ_(c)), and bending strength (σ_(b)) reached 1.1 GPa, 300 MPa, and 90 MPa, respectively, all of which are far superior to those of ordinary polycrystalline SnSe. Furthermore, the microstructures did not deteriorate thermoelectric performance. This work demonstrated an effective procedure to prepare polycrystalline microstructure-engineered SnSe materials, which not only show advantages in device applications but also shed light on property enhancement for other layer-structured thermoelectric materials.展开更多
The discovery of two-dimensional(2D)semiconductor has opened up new avenues for the development of short-channel field-effect transistors(FETs)with desired electrical performance.Among them,orthorhombic tin-selenide(S...The discovery of two-dimensional(2D)semiconductor has opened up new avenues for the development of short-channel field-effect transistors(FETs)with desired electrical performance.Among them,orthorhombic tin-selenide(SnSe)has garnered increasing attention due to its potential applications in a variety of electronic,optoelectronic,and thermoelectric devices.However,the realization of high-performance SnSe FETs with low contact resistance(Rc)remains a challenge.Herein,we systematically investigate the contact of few-layer SnSe FETs through the modulation of native oxide on SnSe by using different metals.It is found that chromium(Cr)-contacted devices possess the best FET performance,such as electron mobility up to 606 cm^(2)/(V·s)at 78 K,current on/off ratio exceeding 1010,and saturation current of~550μA/μm,where a negligible Schottky barrier(SB)of~30 meV and a low contact resistance of~425Ωμm are achieved.X-ray photoelectron spectroscopy(XPS)and cross-sectional electron dispersive X-ray spectroscopy(EDX)results further reveal that the improved contact arises from the Cr-induced reduction of native oxide(SnOx)to Sn,which thins the tunneling barrier for efficient electron injection.Our findings provide a deep insight into the 2D-metal contact of SnSe and pave the way for its applications in future nanoelectronics.展开更多
SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-p...SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-principles calculations.We uncover distinct energy isosurfaces topology transition of conduction band by applying pressure.The newly created conduction band valley caused by pressure has a distinct anisotropic shape compared to the old one.Inducing pressure can greatly enhance the anisotropy of electronic transport properties of the n-type Pnma SnSe.Furthermore,the lattice thermal conductivity also exhibits anisotropic behavior under pressure due to a special collaged phonon mode.The pressure-induced lattice thermal conductivity along the a-axis shows a slower growth trend than that along the b-axis and c-axis.The optimal ZT value of the n-type Pnma SnSe along the a-axis can reach 1.64 at room temperature.These results would be helpful for designing the Pnma SnSe-based materials for the potential thermoelectric and valleytronic applications.展开更多
文摘Anisotropic materials are of considerable interest because of their unique combination of polarization- or direction-dependent electrical, optical, and thermoelectric properties. Low-symmetry two-dimensional (2D) materials formed by van der Waals stacking of covalently bonded atomic layers are inherently anisotropic. Layered SnSe exhibits a low degree of lattice symmetry, with a distorted NaC1 structure and an in-plane anisotropy. Here we report a systematic study of the in-plane anisotropic properties in layered SnSe, using angle-resolved Raman scattering, optical absorption, and electrical transport studies. The optical and electrical characterization was direction-dependent, and successfully identified the crystalline orientation in the layered SnSe. Furthermore, the dependence of Raman-intensity anisotropy on the SnSe flake thickness and the excitation wavelength were investigated by both experiments and theoretical calculations. Finally, the electrical transport studies demonstrated that few-layer SnSe field- effect transistors (FETs) have a large anisotropic ratio of carrier mobility (N 5.8) bet- ween the armchair and zigzag directions, which is a record high value reported for 2D anisotropic materials. The highly-anisotropic properties of layered SnSe indicate considerable promise for anisotropic optics, electronics, and optoelectronics.
文摘Two-dimensional layered IV-VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV-VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV-VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from I to 6 Dm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity.
基金This work was supported by the National Natural Science Foundation of China(No.51702225)the National Key Research and Development Program(No.2016YFA0200103)Natural Science Foundation of Jiangsu Province(No.BK20170336).C.L.,乙乙L.,Z.X.,H.N.C.,Y.Z.S.,L.H.Y.,W.J.Y.,J.Y.S.,and Z.F.L.acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Suzhou,China.
文摘Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries andhybrid capacitors.However,synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durablesodium-ion storages remains challenging to date for its practical applications.Herein,metal-organic framework(MOF)derived SnSe/C wrappedwithin nitrogen-doped graphene(NG@SnSe/C)is designed targeting durable sodium-ion storage.NG@SnSe/C possesses favorable electricalconductivity and structure stability due to the"inner"carbon framework from the MOF thermal treatment and"outer"graphitic cage from thedirect chemical vapor deposition synthesis.Consequently,NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g^-1 at 0.05 A·g^1,a favorable rate performance of 287.8 mAh·g^1 at 5 A·g^1 and a superior cycle stability with a negligible capacity decay of 0.016%percycle over 3,200 cycles at 0.4 A·g^1.Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/Cstructure and improve the electrical conductivity.The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-raydiffraction/ex-s/tu transmission electron microscopy.Furthermore,assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/Canode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg^-1/5,742 W·kg^-1,holding promise for next-generationen ergy storages.
基金the National Key Research and Development Program of China(2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China(51632005 and 51772012)+2 种基金the Beijing Natural Science Foundation(JQ18004)the Shenzhen Peacock Plan team(KQTD2016022619565991)111 Project(B17002).L.D.Z.thanks for the support from the National Science Fund for Distinguished Young Scholars(51925101).
文摘It has been proved that the thermoelectric performance of p-type SnSe crystals can be optimized through enhancing carrier concentration.The calculations of electronic band structure elucidate that this approach can be interpreted by including multiple valence bands.To better estimate the potential performance,we proposed the transport properties for p-type SnSe crystals and analyzed the weighted mobility from the experimental results.The weighted mobility approaches~600 cm^(2)V1s1 when the carrier concentration is as high as~6.31019 cm3.Combined with obtained lattice thermal conductivity,through rising carrier concentration,the quality factor B possesses significant improvements of~235%and 138%at 300 K and 773 K,respectively.Through comparing weighted mobility and Hall mobility,two effective mass values~0.9 me and 1.8 me can be derived using carrier concentrations.It is expected that the ZT~1.0 at 300K and ZT~2.9 at 773 K can be obtained when the carrier concentration of~8.01019 cm3 and the effective mass~1.8 me were selected.This work provides an alternative way to comprehend the performance optimization in thermoelectric community.
基金financially supported by the National Key Research and Development Program of China (Nos.2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China (Nos.51772012 and 51671015)+3 种基金Beijing Natural Science Foundation (No.JQ18004)National Postdoctoral Program for Innovative Talents (No.BX20200028)the support from the National Science Fund for Distinguished Young Scholars (No.51925101)the high performance computing (HPC) resources at Beihang University。
文摘SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and electrical conductivity. We firstly attempted to explain and verify the difference in the electrical conductivity as a function of temperature between p-type crystalline and polycrystalline SnSe by considering the grain boundary effects in the polycrystalline samples. On the basis of 2% Na doping to optimize the carrier concentration, the carrier mobility is improved by further introducing In, leading to enhanced carrier mobility from 3 to 9 cm2·V^(-1)·s^(-1) in polycrystalline SnSe. Moreover, In doping introduces extra resonant levels in SnSe, which increases the density of states near Fermi level and leads to an enhanced band effective mass. Large Seebeck coefficient of ~205 l V·K^(-1) at 300 K and maximum power factor of ~7.5 l W·cm^(-1)·K^(-2) at 773 K can be obtained in the Sn_(0.975)Na_(0.02)In_(0.005) Se sample,leading to a competitively high dimensionless figure of merit(ZT) value exceeding 1.1 at 773 K.
基金financially supported by the National Science Foundation (No. DMR-1410636)the Natural Science Foundation of Guangdong Province (No. 2015A030308001)+3 种基金the Leading Talents of Guangdong Province Program (No. 00201517)the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. JCYJ20150831142508365,KQTD20160226195 65991 and KQCX2015033110182370)the National Natural Science Foundation of China (No. 51632005)supported by Project funded by China Postdoctoral Science Foundation
文摘Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of -0.74 at 773 K for SnSe + 1.0%AgzSe in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.
基金financially supported by the National Natural Science Foundation of China (51972094,61674050 and 61874158)the Outstanding Youth Project of Hebei Province (F2016201220)+3 种基金the Project of Science and Technology Activities for Overseas Researcher (CL201602)the Project of Distinguished Youth of Hebei Province (A2018201231)the Support Program for the Top Young Talents of Hebei Province (70280011807)the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (SLRC2019018)。
文摘The emerging two-terminal memristor with a conductance-adjustable function under external stimulation is considered a strong candidate for use in artificial memory and electronic synapses. However, the stability, uniformity, and power consumption of memristors are still challenging in neuromorphic computing. Here an Au/SnSe/graphene/SiO_(2)/Si memristor was fabricated, incorporating two-dimensional graphene with high thermal conductivity. The device not only exhibits excellent electrical characteristics(e.g., high stability,good uniformity and a high ROFF/RON ratio), but also can implement biological synaptic functions such as paired-pulse facilitation, short-term plasticity and long-term plasticity. Its set and reset power values can be as low as 16.7 and 2.3 nW,respectively. Meanwhile, the resistance switching mechanism for the device, which might be associated with the formation and rupture of a filamentary conducting path consisting of Sn vacancies, was confirmed by high-resolution transmission electron microscopy observations. The proposed device is an excellent candidate for use in high-density storage and lowpower neuromorphic computing applications.
基金supported by the National Natural Science Foundation of China(Nos.U1832147,11705015)Natural Science Foundation of Jiangsu Educational Department(No.15KJA430001)+1 种基金Foundation of Jiangsu science and Technology Department(No.BA2016041)Science and Technology Development Plan Project in Suzhou(Nos.SYG201738,SYZ201710)。
文摘The Sn Se nanoparticles encapsulated in the carbon nanofibers(Sn Se@C)with microrod morphology and core-shell structure are prepared by electrospinning and annealing process,and investigated as anode materials for sodium ion batteries.Benefiting from this unique structure,the Sn Se@C can deliver a reversible capacity of 283.8 m Ah g^(-1) after 500 cycles at a high current density of 1.0 A g^(-1).The sodium ion storage mechanisms of Sn Se are further characterized by ex-situ X-ray diffraction,high-resolution transmission electron microscope and selected area electron diffraction measurements.Besides,the excellent electrochemical performance of the electrodes is investigated by pseudocapacitance and in situ electrochemical impedance spectroscopy measurements.This work may provide a new avenue for synthesis of metal selenides with core-shell structure and a good idea for studying the kinetics process.
基金supported by the National Key R&D Program of China(2018YFA0305900)the National Natural Science Foundation of China(52001339,52090020,and 52288102)the Natural Science Foundation of Hebei Province of China(E2022203109).
文摘The outstanding thermoelectric material, SnSe, is also known for its inferior mechanical properties, which bring great inconvenience for its application in thermoelectric devices. In this work, SnSe bulks were prepared via a sequential procedure of high-pressure synthesis (HPS), ball milling, and spark plasma sintering (SPS). The produced polycrystalline samples with a unique microstructure of tightly-bound quasi-equiaxed grains exhibited excellent mechanical properties. The Vickers hardness (HV), compressive strength (σ_(c)), and bending strength (σ_(b)) reached 1.1 GPa, 300 MPa, and 90 MPa, respectively, all of which are far superior to those of ordinary polycrystalline SnSe. Furthermore, the microstructures did not deteriorate thermoelectric performance. This work demonstrated an effective procedure to prepare polycrystalline microstructure-engineered SnSe materials, which not only show advantages in device applications but also shed light on property enhancement for other layer-structured thermoelectric materials.
基金support from the National Natural Science Foundation of China(Nos.62004128 and 61874074)the Fundamental Research Foundation of Shenzhen(No.JCYJ20190808152607389)+1 种基金the Science and Technology Project of Shenzhen(No.JCYJ20220531100815034)H.N.L.acknowledges the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012055).
文摘The discovery of two-dimensional(2D)semiconductor has opened up new avenues for the development of short-channel field-effect transistors(FETs)with desired electrical performance.Among them,orthorhombic tin-selenide(SnSe)has garnered increasing attention due to its potential applications in a variety of electronic,optoelectronic,and thermoelectric devices.However,the realization of high-performance SnSe FETs with low contact resistance(Rc)remains a challenge.Herein,we systematically investigate the contact of few-layer SnSe FETs through the modulation of native oxide on SnSe by using different metals.It is found that chromium(Cr)-contacted devices possess the best FET performance,such as electron mobility up to 606 cm^(2)/(V·s)at 78 K,current on/off ratio exceeding 1010,and saturation current of~550μA/μm,where a negligible Schottky barrier(SB)of~30 meV and a low contact resistance of~425Ωμm are achieved.X-ray photoelectron spectroscopy(XPS)and cross-sectional electron dispersive X-ray spectroscopy(EDX)results further reveal that the improved contact arises from the Cr-induced reduction of native oxide(SnOx)to Sn,which thins the tunneling barrier for efficient electron injection.Our findings provide a deep insight into the 2D-metal contact of SnSe and pave the way for its applications in future nanoelectronics.
基金support of the project from the National Natural Science Foundation of China(Grant No.91963207,12122408,12074292)National Key R&D Program of China(Grant No.2021YFA0718700)Suzhou Key Industrial Technology Innovation project(Grant No.SYG201921).
文摘SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-principles calculations.We uncover distinct energy isosurfaces topology transition of conduction band by applying pressure.The newly created conduction band valley caused by pressure has a distinct anisotropic shape compared to the old one.Inducing pressure can greatly enhance the anisotropy of electronic transport properties of the n-type Pnma SnSe.Furthermore,the lattice thermal conductivity also exhibits anisotropic behavior under pressure due to a special collaged phonon mode.The pressure-induced lattice thermal conductivity along the a-axis shows a slower growth trend than that along the b-axis and c-axis.The optimal ZT value of the n-type Pnma SnSe along the a-axis can reach 1.64 at room temperature.These results would be helpful for designing the Pnma SnSe-based materials for the potential thermoelectric and valleytronic applications.