Three dimensional(3D)porous nanostructures assembled by low-dimensional nanomaterials are widely applied in gas sensor according to porous structure which can facilitate the transport of gas molecules.In this work,fis...Three dimensional(3D)porous nanostructures assembled by low-dimensional nanomaterials are widely applied in gas sensor according to porous structure which can facilitate the transport of gas molecules.In this work,fish-scale-like porous SnO 2 nanomaterials assembled from ultrathin nanosheets with thick-ness of 16.8 nm were synthesized by a facile hydrothermal route.Then Ag nanoparticles were decorated on the surface of SnO_(2) nanosheets via one-step method to improve their gas-sensing performances.The sensing properties of pristine SnO_(2) and Ag/SnO_(2) nanosheets were investigated intensively.After deco-rating with Ag nanoparticles,the characteristics of SnO_(2) based sensor for triethylamine detection were significantly improved.Especially,the Ag/SnO_(2) based sensor with Ag content of 2 at%exhibited the highest triethylamine sensing sensitivity at optimum work temperature of 170?C.The improved sensing properties of Ag/SnO_(2) sensors were attributed to the sensitizing actions of Ag nanoparticles as well as the unique hierarchical porous architecture.展开更多
Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance...Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).展开更多
NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its st...NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its strong oxidation performance,Sn-MnO_(x) was prone to side reactions between NO,NH_(3)and O_(2),resulting in the generation of more NO_(2)and N_(2)O,here most of N_(2)O was driven from the non-selective oxidation of NH_(3),while a small part generated from the side reaction between NH_(3)and NO_(2).Co or Ni doping into Sn-MnO_(x) as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N_(2)O.The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO_(2)to provide more surface adsorbed oxygen,active sites of Mn^(3+) and Mn^(4+),high-content Sn^(4+) and plentiful Lewis-acidity for more active intermediates,which significantly broadened the activity window of Sn-MnOx,improved the N^(2) selectivity by inhibiting N_(2)O formation,and also contributed to an acceptable resistances to water and sulfur.At low reaction temperatures,the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal(E-R)routs via the reactions of adsorbed L-NH_(x)(x=3,2,1)and B-NH_(4)^(+) with the gaseous NO to generate N_(2) but also N_(2)O by-products.Except for the above basic E-R reactions,as increasing the reaction temperature,the main adsorbed NO_(x)-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed L-NH_(x) species over Co/Ni modified Mn-SnO_(2) catalyst.展开更多
Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensio...Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensional(2 D)sandwiched FeNi@SnO_(2)have been designed,for which SnO_(2)nanosheets provide numerous heterogeneous nucleation sites for the growth of dispersive FeNi nanoparticles with reduced size.The SnO_(2)exhibits dipole polarization at 21.45 GHz with a width of~4.00 GHz,while the FeNi nanoparticles induce excha nge resonance at 18.13 GHz(~6.00 GHz width)and interfacial polarization at15.97 GHz(~6.00 GHz width).Such complementary attenuation mechanisms give rise to an impressive ultra-wide effective absorption bandwidth of 11.70 GHz with strong absorption of-49.1 dB at a small thickness of 1.75 mm.Not only superior EM wave absorption is achieved in this work,it also provides a versatile strategy to integrate different loss mechanisms in the design of EM wave absorbers with extra-wide bandwidth.展开更多
基金This work was supported by the National Natural Science Foundation of China(U1704255)the Key Scientific Research Project of Colleges and University in Henan Province(20A430014,21A430019).
文摘Three dimensional(3D)porous nanostructures assembled by low-dimensional nanomaterials are widely applied in gas sensor according to porous structure which can facilitate the transport of gas molecules.In this work,fish-scale-like porous SnO 2 nanomaterials assembled from ultrathin nanosheets with thick-ness of 16.8 nm were synthesized by a facile hydrothermal route.Then Ag nanoparticles were decorated on the surface of SnO_(2) nanosheets via one-step method to improve their gas-sensing performances.The sensing properties of pristine SnO_(2) and Ag/SnO_(2) nanosheets were investigated intensively.After deco-rating with Ag nanoparticles,the characteristics of SnO_(2) based sensor for triethylamine detection were significantly improved.Especially,the Ag/SnO_(2) based sensor with Ag content of 2 at%exhibited the highest triethylamine sensing sensitivity at optimum work temperature of 170?C.The improved sensing properties of Ag/SnO_(2) sensors were attributed to the sensitizing actions of Ag nanoparticles as well as the unique hierarchical porous architecture.
基金the National Science Fund for Distinguished Young Scholars(Grant No.52125103)the National Natural Science Foundation of China(Grant Nos.52301232,52071041,12074048,and 12147102)China Postdoctoral Science Foundation(Grant No.2022M720552).
文摘Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).
基金financially supported by National Natural Science Foundation of China (Nos. U20A20130, 21806009)China Postdoctoral Science Foundation (2019T120049)Fundamental Research Funds for the Central Universities (No. 06500152).
文摘NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its strong oxidation performance,Sn-MnO_(x) was prone to side reactions between NO,NH_(3)and O_(2),resulting in the generation of more NO_(2)and N_(2)O,here most of N_(2)O was driven from the non-selective oxidation of NH_(3),while a small part generated from the side reaction between NH_(3)and NO_(2).Co or Ni doping into Sn-MnO_(x) as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N_(2)O.The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO_(2)to provide more surface adsorbed oxygen,active sites of Mn^(3+) and Mn^(4+),high-content Sn^(4+) and plentiful Lewis-acidity for more active intermediates,which significantly broadened the activity window of Sn-MnOx,improved the N^(2) selectivity by inhibiting N_(2)O formation,and also contributed to an acceptable resistances to water and sulfur.At low reaction temperatures,the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal(E-R)routs via the reactions of adsorbed L-NH_(x)(x=3,2,1)and B-NH_(4)^(+) with the gaseous NO to generate N_(2) but also N_(2)O by-products.Except for the above basic E-R reactions,as increasing the reaction temperature,the main adsorbed NO_(x)-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed L-NH_(x) species over Co/Ni modified Mn-SnO_(2) catalyst.
基金supported by the Key Research and Development Program of Zhejiang Province(2020C05014 and 2020C01008)Ningbo Major Special Projects of the Plan“Science and Technology Innovation 2025”(2018B10085)。
文摘Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensional(2 D)sandwiched FeNi@SnO_(2)have been designed,for which SnO_(2)nanosheets provide numerous heterogeneous nucleation sites for the growth of dispersive FeNi nanoparticles with reduced size.The SnO_(2)exhibits dipole polarization at 21.45 GHz with a width of~4.00 GHz,while the FeNi nanoparticles induce excha nge resonance at 18.13 GHz(~6.00 GHz width)and interfacial polarization at15.97 GHz(~6.00 GHz width).Such complementary attenuation mechanisms give rise to an impressive ultra-wide effective absorption bandwidth of 11.70 GHz with strong absorption of-49.1 dB at a small thickness of 1.75 mm.Not only superior EM wave absorption is achieved in this work,it also provides a versatile strategy to integrate different loss mechanisms in the design of EM wave absorbers with extra-wide bandwidth.