Highly ordered SnO2/Fe2O3 composite nano- wire arrays have been synthesized by electrophoretic deposi- tion method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by ...Highly ordered SnO2/Fe2O3 composite nano- wire arrays have been synthesized by electrophoretic deposi- tion method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetragonal SnO2 and rhombohedral ɑ-Fe2O3 with diameters of 10-15 nm. The SnO2/Fe2O3 com- posite nanowires are formed by a series of chemical reac- tions.展开更多
The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in t...The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in this paper. The results obtained by cyclic voltammetry (CV), electrochemical impedance spectroscopic (EIS), X-ray Diffraction (XRD) and scanning electron microscopy (SEM) indicated that PbO2 crystal grains presented honeycomb structure were formed on the electrode surface by doping with Ce. The specific surface areas and catalytic active sites of the Ce-PbO2 doped electrode were increased and the catalytic activity was evidently greater than the undoped one. However, when Ce was doped into the intermediate layer (SnO2+Mn2O3), a more cracked surface structure formed, thus leading electrode deactivation by passivation of the Ti-substrate. So the anodic stability was decreased according to the accelerated life tests.展开更多
基金This work was supported by the Prophase Project of“973”Plan(Grant No.2002CCC02700)the National Natural Science Foundation of China(Grants No.20371015 and 90306010).
文摘Highly ordered SnO2/Fe2O3 composite nano- wire arrays have been synthesized by electrophoretic deposi- tion method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetragonal SnO2 and rhombohedral ɑ-Fe2O3 with diameters of 10-15 nm. The SnO2/Fe2O3 com- posite nanowires are formed by a series of chemical reac- tions.
基金the National Natural Science Foundation of China (20476070,20771080)Natural Science Foundation of Shanxi Province (20031024 ,20041020)
文摘The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in this paper. The results obtained by cyclic voltammetry (CV), electrochemical impedance spectroscopic (EIS), X-ray Diffraction (XRD) and scanning electron microscopy (SEM) indicated that PbO2 crystal grains presented honeycomb structure were formed on the electrode surface by doping with Ce. The specific surface areas and catalytic active sites of the Ce-PbO2 doped electrode were increased and the catalytic activity was evidently greater than the undoped one. However, when Ce was doped into the intermediate layer (SnO2+Mn2O3), a more cracked surface structure formed, thus leading electrode deactivation by passivation of the Ti-substrate. So the anodic stability was decreased according to the accelerated life tests.