Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal com...Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.展开更多
The South China Block(SCB)is among the large-scale W-Sn mineralized regions of the globe.The Laojunshan W-Sn-dominant ore area(LOA)in the western part of the SCB preserves the records of the tectonic history of the Te...The South China Block(SCB)is among the large-scale W-Sn mineralized regions of the globe.The Laojunshan W-Sn-dominant ore area(LOA)in the western part of the SCB preserves the records of the tectonic history of the Tethys realm extending through North Vietnam,and Yangtze to Cathaysia blocks,with coeval formation of giant metallic deposits.The prolonged tectonic activities and their control on the genesis and spatio-temporal distribution of giant metallic deposits in the LOA provide a window for a holistic understanding of the tectono-metallogenesis of the SCB.In this study,we present results from a multi-chronologic study to determine the timing of formation of the cassiterite-wolframite-schee lite mineralization.The results suggest three distinct tectono-metallogenic periods in the LOA during the geodynamic evolution of the surrounding tectonic units.The opening of the Proto-Tethys Ocean between the Yangtze-Indochina blocks and the westward Paleo-Pacific subduction beneath the Cathaysia block(420–380 Ma)jointly contributed to the Silurian to early Devonian intracontinental orogeny in the middle of the SCB that involved top-to-the-north thrusting along NE-striking shear zones.This event generated the Dulong-Song Chay granitoids,together with the formation of Xinzhai Sn deposit related to sheared mylonitic granites(ca.419 Ma)and pegmatites(ca.389 Ma),which include the early-stage Sn-sulfide skarn(ca.418 Ma)and the late-stage Sn-bearing schist(ca.389 Ma).During the Late Permian to Late Triassic(260–220 Ma),with the closure of the Proto-Tethys oceans in the west and ongoing Paleo-Pacific westward subduction in the east,the SCB and Indochina Block(IB)were amalgamated which also marks the time of formation of the Nanwenhe scheelite skarn deposit.The subducted PaleoTethys oceanic crust was likely entrained by the nearby rising Emeishan mantle plume(270–259 Ma),which formed the Maguan diabase(ca.260 Ma)that shows significantly older Re-Os model age of ca.268 Ma,suggesting that the Nanwenhe mineralization is potent展开更多
The tin(Sn)-tungsten(W)polymetallic ore concentrated district in SE Yunnan is distributed at the junction region of the Yangtze Block,the Cathaysian Block and the Indosinian Block,where there are several giant deposit...The tin(Sn)-tungsten(W)polymetallic ore concentrated district in SE Yunnan is distributed at the junction region of the Yangtze Block,the Cathaysian Block and the Indosinian Block,where there are several giant deposits of tin,tungsten,copper,silver,lead,zinc and indium closely associated with a large scale Late Cretaceous magmatism.Bi-dimensional empirical mode decomposition(BEMD)is used to extract aeromagnetic anomalous components at the survey scale of 1:200000 from the original aeromagnetic data of SE Yunnan.Four intrinsic mode functions(IMFs)and a residues component are obtained,which may reflect the geological structures and geological bodies at different spatial scales from high frequency to low frequency.The results are shown as follows:(1)Two different types of Precambrian basement in the study area were recognized:one is the Yangtze Block basement characterized by a strong positive magnetic anomaly,the other is the Cathaysian Block basement with a weak negative magnetic anomaly.The former consists of high grade metamorphic rocks including metamorphosed basic igneous rocks,while the latter consists of low grade metamorphosed sedimentary rocks.(2)The aeromagnetic anomalies associated with Sn-W polymetallic mineralization and related to granites in the study area illustrate a pattern of a skarnized alteration-mineralization zone with a positive ring magnetic anomaly enclosing a granitic intrusion with negative magnetic anomaly;(3)The ring positive magnetic anomaly zones enclosing the negative magnetic anomaly are defined as the SnW polymetallic ore-searching targets in the study area.展开更多
The stability of underground excavations has become an important issue in order to extend underground mining operations and extract deeper deposits. The increasing demand for Tin-Tungsten (Sn-W) for industry and its m...The stability of underground excavations has become an important issue in order to extend underground mining operations and extract deeper deposits. The increasing demand for Tin-Tungsten (Sn-W) for industry and its market price has created a motivation for mining companies to extract deep-seated Sn-W ore deposits in Myanmar. Thus, this paper aims to investigate the stability of underground openings, especially, the stope with considering the mining methods. To meet the objective, FLAC<sup>3D</sup> 5.0 simulation was used for the assessment of stope under different stress ratios, 0.5, 1.0, and 1.5 for two types of underground mines;Open stoping and Cut and Fill stoping. The results show that the risk of instability of stope is high under the stress ratio of <em>K</em> = 0.5 than that of <em>K</em> = 1.0 and <em>K</em> = 1.5 in both mining methods. However, the stability of the stope in open stope method is lower than that of cut-and-fill method obviously. This result shows that the appropriate mining method has to be selected for extraction of Sn-W deposit carefully in terms of the balance of safety and cost.展开更多
In this work, a series of Mg–Sn–W oxide powder catalysts with different tungsten oxide contents(0, 15 wt% and 30 wt%) were prepared and washcoated on cordierite honeycomb monoliths to produce monolithic catalysts,wh...In this work, a series of Mg–Sn–W oxide powder catalysts with different tungsten oxide contents(0, 15 wt% and 30 wt%) were prepared and washcoated on cordierite honeycomb monoliths to produce monolithic catalysts,which were tested for the Baeyer–Villiger oxidation of cyclohexanone. The obtained monolithic catalysts,which combined the advantages of both homogeneous and heterogeneous catalysts, showed high catalytic efficiency and overcame the problems of product separation that occurred in the homogeneous catalytic process.SEM and EDX tests showed that the catalytic coating, with a thickness of approximately 20 μm, was compact and homogeneous, and an enlarged BET surface area was indicated by N_2 adsorption–desorption compared with the bare cordierite honeycomb. The chemical properties on the catalytic surface of the powder and monolithic catalysts were characterized by XPS, which indicated the tin and tungsten on the catalysts exhibited their full oxide states and presented mainly as stannate and tungstate, as confirmed by XRD and FTIR characterizations.Moreover, the catalytic activity test indicated that the tungsten content of the catalysts played an important role in catalytic efficiency and that monolithic catalysts were produced without obvious catalytic activity loss compared with the corresponding powders.(M)W30, which exhibited excellent mechanical stability and maintained high activity after recycling three times, was the optimal catalyst, showing a high selectivity that exceeded 86%and a conversion above 64%. Therefore, the structured Mg–Sn–W oxide catalysts have great potential for application in practical production.展开更多
基金funded by the Na-tional Natural Science Foundation of China(Grant Nos.41672329,41272365)the National Key Research and Development Project of China(Grant No.2016YFC0600509)the Project of China Geological Survey(Grant No.1212011120341)
文摘Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.
基金supported by the China Geological Survey Program(Grant Nos.1212011121260,1212011220928)the National Natural Science Foundation of China(Gant No.91755206)。
文摘The South China Block(SCB)is among the large-scale W-Sn mineralized regions of the globe.The Laojunshan W-Sn-dominant ore area(LOA)in the western part of the SCB preserves the records of the tectonic history of the Tethys realm extending through North Vietnam,and Yangtze to Cathaysia blocks,with coeval formation of giant metallic deposits.The prolonged tectonic activities and their control on the genesis and spatio-temporal distribution of giant metallic deposits in the LOA provide a window for a holistic understanding of the tectono-metallogenesis of the SCB.In this study,we present results from a multi-chronologic study to determine the timing of formation of the cassiterite-wolframite-schee lite mineralization.The results suggest three distinct tectono-metallogenic periods in the LOA during the geodynamic evolution of the surrounding tectonic units.The opening of the Proto-Tethys Ocean between the Yangtze-Indochina blocks and the westward Paleo-Pacific subduction beneath the Cathaysia block(420–380 Ma)jointly contributed to the Silurian to early Devonian intracontinental orogeny in the middle of the SCB that involved top-to-the-north thrusting along NE-striking shear zones.This event generated the Dulong-Song Chay granitoids,together with the formation of Xinzhai Sn deposit related to sheared mylonitic granites(ca.419 Ma)and pegmatites(ca.389 Ma),which include the early-stage Sn-sulfide skarn(ca.418 Ma)and the late-stage Sn-bearing schist(ca.389 Ma).During the Late Permian to Late Triassic(260–220 Ma),with the closure of the Proto-Tethys oceans in the west and ongoing Paleo-Pacific westward subduction in the east,the SCB and Indochina Block(IB)were amalgamated which also marks the time of formation of the Nanwenhe scheelite skarn deposit.The subducted PaleoTethys oceanic crust was likely entrained by the nearby rising Emeishan mantle plume(270–259 Ma),which formed the Maguan diabase(ca.260 Ma)that shows significantly older Re-Os model age of ca.268 Ma,suggesting that the Nanwenhe mineralization is potent
基金jointly funded by the National Key Research and Development Project of China(No.2016YFC0600509)the National Natural Science Foundation of China(Nos.41972312,41672329,41272365)the China Geological Survey(No.1212011220922)。
文摘The tin(Sn)-tungsten(W)polymetallic ore concentrated district in SE Yunnan is distributed at the junction region of the Yangtze Block,the Cathaysian Block and the Indosinian Block,where there are several giant deposits of tin,tungsten,copper,silver,lead,zinc and indium closely associated with a large scale Late Cretaceous magmatism.Bi-dimensional empirical mode decomposition(BEMD)is used to extract aeromagnetic anomalous components at the survey scale of 1:200000 from the original aeromagnetic data of SE Yunnan.Four intrinsic mode functions(IMFs)and a residues component are obtained,which may reflect the geological structures and geological bodies at different spatial scales from high frequency to low frequency.The results are shown as follows:(1)Two different types of Precambrian basement in the study area were recognized:one is the Yangtze Block basement characterized by a strong positive magnetic anomaly,the other is the Cathaysian Block basement with a weak negative magnetic anomaly.The former consists of high grade metamorphic rocks including metamorphosed basic igneous rocks,while the latter consists of low grade metamorphosed sedimentary rocks.(2)The aeromagnetic anomalies associated with Sn-W polymetallic mineralization and related to granites in the study area illustrate a pattern of a skarnized alteration-mineralization zone with a positive ring magnetic anomaly enclosing a granitic intrusion with negative magnetic anomaly;(3)The ring positive magnetic anomaly zones enclosing the negative magnetic anomaly are defined as the SnW polymetallic ore-searching targets in the study area.
文摘The stability of underground excavations has become an important issue in order to extend underground mining operations and extract deeper deposits. The increasing demand for Tin-Tungsten (Sn-W) for industry and its market price has created a motivation for mining companies to extract deep-seated Sn-W ore deposits in Myanmar. Thus, this paper aims to investigate the stability of underground openings, especially, the stope with considering the mining methods. To meet the objective, FLAC<sup>3D</sup> 5.0 simulation was used for the assessment of stope under different stress ratios, 0.5, 1.0, and 1.5 for two types of underground mines;Open stoping and Cut and Fill stoping. The results show that the risk of instability of stope is high under the stress ratio of <em>K</em> = 0.5 than that of <em>K</em> = 1.0 and <em>K</em> = 1.5 in both mining methods. However, the stability of the stope in open stope method is lower than that of cut-and-fill method obviously. This result shows that the appropriate mining method has to be selected for extraction of Sn-W deposit carefully in terms of the balance of safety and cost.
基金Supported by the National Natural Science Foundation of China(21676206)
文摘In this work, a series of Mg–Sn–W oxide powder catalysts with different tungsten oxide contents(0, 15 wt% and 30 wt%) were prepared and washcoated on cordierite honeycomb monoliths to produce monolithic catalysts,which were tested for the Baeyer–Villiger oxidation of cyclohexanone. The obtained monolithic catalysts,which combined the advantages of both homogeneous and heterogeneous catalysts, showed high catalytic efficiency and overcame the problems of product separation that occurred in the homogeneous catalytic process.SEM and EDX tests showed that the catalytic coating, with a thickness of approximately 20 μm, was compact and homogeneous, and an enlarged BET surface area was indicated by N_2 adsorption–desorption compared with the bare cordierite honeycomb. The chemical properties on the catalytic surface of the powder and monolithic catalysts were characterized by XPS, which indicated the tin and tungsten on the catalysts exhibited their full oxide states and presented mainly as stannate and tungstate, as confirmed by XRD and FTIR characterizations.Moreover, the catalytic activity test indicated that the tungsten content of the catalysts played an important role in catalytic efficiency and that monolithic catalysts were produced without obvious catalytic activity loss compared with the corresponding powders.(M)W30, which exhibited excellent mechanical stability and maintained high activity after recycling three times, was the optimal catalyst, showing a high selectivity that exceeded 86%and a conversion above 64%. Therefore, the structured Mg–Sn–W oxide catalysts have great potential for application in practical production.