The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated th...The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.展开更多
The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potentia...The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
基金Project (2005DKA10400-Z23) supported by Chinese National Science and Technology InfrastructureProject (DUT10R:(3)65) supported by Fundamental Research Funds for the Central Universities,China
文摘The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.
基金Project(2012FY113000)supported by the National Science and Technology Basic Project of the Ministry of Science and Technology of ChinaProjects(51171037+2 种基金5113401351101024)supported by the National Natural Science Foundation of ChinaProject(14B430009)supported by the Science Research Fund of Education Department of Henan Province,China
文摘The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.