A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination ...A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.展开更多
The electrode materials SnO2, RuO2 and (Sn-Ru)O2 were synthesized through precipitation method from SnCl2·2H2O and RuCl2·2H2O solutions. The obtained nano-sized pristine products were characterized using X-r...The electrode materials SnO2, RuO2 and (Sn-Ru)O2 were synthesized through precipitation method from SnCl2·2H2O and RuCl2·2H2O solutions. The obtained nano-sized pristine products were characterized using X-ray diffractometry, Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC)-thermogravimetric analysis (TGA) and cyclic voltammetry (CV). The Debye–Scherrer formula was used to estimate the average size of the nanoparticles SnO2 (36 nm), RuO2(24 nm), and (Sn-Ru)O2 (19 nm). Electrochemical studies were carried out to examine the capacitance of SnO2, RuO2, (Sn-Ru)O2 electrodes in 0.5 M H2SO4 at various scan rates. The estimated electrode capacitance was de-termined to decrease with an increase of scan rate.展开更多
TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations ...TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.展开更多
介绍了Ag基触点材料的发展历史以及Ag Sn O2材料的研究现状,分析了Ag Sn O2材料在当前工业化生产中所面临的问题。针对国内粉体制备工艺的不足以及Ag Sn O2材料加工性能不佳等难题,总结了不同加工工艺对材料性能的影响,提出了以优化加...介绍了Ag基触点材料的发展历史以及Ag Sn O2材料的研究现状,分析了Ag Sn O2材料在当前工业化生产中所面临的问题。针对国内粉体制备工艺的不足以及Ag Sn O2材料加工性能不佳等难题,总结了不同加工工艺对材料性能的影响,提出了以优化加工工艺为出发点,探讨利用有限元分析(FEM)寻求最优工艺参数的可能性,并通过有限元分析法解决Ag Sn O2加工的困难,为改善材料的综合性能提供指导。展开更多
采用固相烧结法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1-x)Sn_x)O_3(BCZTS)无铅压电陶瓷。研究了不同含量SnO_2(x=0,0.02,0.04,0.06,0.08)对BCZT无铅压电陶瓷相结构、压电性能、介电性能和铁电性能的影响,并利用XRD、SEM、准静态d3...采用固相烧结法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1-x)Sn_x)O_3(BCZTS)无铅压电陶瓷。研究了不同含量SnO_2(x=0,0.02,0.04,0.06,0.08)对BCZT无铅压电陶瓷相结构、压电性能、介电性能和铁电性能的影响,并利用XRD、SEM、准静态d33测试仪等表征样品。结果表明,所有样品均为单一钙钛矿结构。当掺杂x=0.02时,(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1-x)Sn_x)O_3无铅压电陶瓷材料的综合性能优异:d33=553 p C/N,kp=49%,εr^7474(1 k Hz),tanδ~1.5%(1k Hz),Pr=6.06μC/cm^2,Ec=2 k V/cm,利用Curie-Weiss定律对该实验结果进行拟合,发现x=0.02的样品的介电弛豫特征更为明显。展开更多
PhCH2)3Sn·(O2CC5H4N)·(H2O)]n was synthesized by the reaction of 4-pyridine car-boxylic acid with the tribenzyltin o xide and was characterized by IR,1 H NMR and MS.Its crystal structure was determined by X-r...PhCH2)3Sn·(O2CC5H4N)·(H2O)]n was synthesized by the reaction of 4-pyridine car-boxylic acid with the tribenzyltin o xide and was characterized by IR,1 H NMR and MS.Its crystal structure was determined by X-ray single crystal diffraction.The crystal belongs to monoclinic.The space group P21 /c with unit cell parameters a=1.2241(8)nm,b=0.9660(6)nm,c=2.3708(15)nm,β=102.722(12)°,V=2.734(3)nm3,Z =4,Dc=1.298g·cm-3 .In crystal,the tin atom rendered five-coordinate in a trigo nal bipyramidal structure which is b ridged by 4-pyridine carboxy-late into one-dimensional chain polymers.展开更多
采用溶胶-凝胶法制备Ti/Sn O_2-F电极,进行全氟辛酸(PFOA)电氧化降解的研究,实验考察了F替代Sb掺杂、电流密度、初始pH值和支持电解质对PFOA降解效率的影响。结果表明,当F替代Sb掺杂Sn O_2,电流密度为20 m A/cm^2,初始pH值3.7,支持电解...采用溶胶-凝胶法制备Ti/Sn O_2-F电极,进行全氟辛酸(PFOA)电氧化降解的研究,实验考察了F替代Sb掺杂、电流密度、初始pH值和支持电解质对PFOA降解效率的影响。结果表明,当F替代Sb掺杂Sn O_2,电流密度为20 m A/cm^2,初始pH值3.7,支持电解质为NaClO_4时,电解30 min后PFOA的降解率达98%。采用液相色谱-质谱联用(HPLC-MS/MS)和离子色谱(IC)对PFOA降解产物进行分析,解析了PFOA电氧化降解的反应机理。展开更多
The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of ...The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of thin films were inspected at different sintering temperatures by constructing a humidity-impedance measuring system. It was found that the addition of rare earth ion La^3+ and alkali ion K^+ was beneficial for improving the humidity sensitive properties of the samples and La0.003K0.5Ti0.9Sn0.1O2 sintered at 500 ℃ for 4 h showed the best humidity sensing properties. The impedance of this thin film decreased from 109 to 104 Ω with excellent linearity in the humidity range of 11%-95%. Narrow hysteresis loop, prominent stability and high sensitivity were obtained. The effects of dopant con-tent and doping mechanism on humidity sensitivity were also discussed in terms of segregation of rare earth ions at grain boundaries and granularity of crystalline and influence of K^+ on the decrease in the intrinsic resistance of the materials, and increase in the number of wa-ter adsorption sites.展开更多
Herein,AgLi1/3Sn2/3O2 with delafossite structure was prepared by treating the layered compound Li2 SnO3 with molten AgN03 via ion exchange of Li^+for Ag^+.The structure characterization and the electrochemical perform...Herein,AgLi1/3Sn2/3O2 with delafossite structure was prepared by treating the layered compound Li2 SnO3 with molten AgN03 via ion exchange of Li^+for Ag^+.The structure characterization and the electrochemical performance of AgLi1/3Sn2/3O2 was thoroughly investigated.AgLi1/3Sn2/3O2 is found to possess stacking lamellar morphology,which means small electrochemical impedance and so facilitates charge transfer kinetics during the cycling.Compared with Li2 Sn03,due to the introducing of excellent electrical conductivity of silver,AgLi1/3Sn2/3O2 exhibits improved electrochemical performance in terms of capacity,cycling stability and coulombic efficiency.The results show AgLi1/3Sn2/3O2 presents favorable specific capacity of 339 mAh/g at current density of 200 mA/g after 50 cycles and initial coulombic efficiency of 96%.Exsitu XRD analysis revealed the reaction mechanism of AgLi1/3Sn2/3O2 as an anode for lithium ion batteries.展开更多
基金The authors thank the National Natural Scir nce Foun-dation of China(No.20076004)the National Development Project of High Technology(No.2001AA322030)the Doctoral Program of Higher Education(No.2000001005)for the financial support of this project.
文摘A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%-30.1%) were prepared from TiCI4 and SnCl4·5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology. Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0-4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nano-composite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.
文摘The electrode materials SnO2, RuO2 and (Sn-Ru)O2 were synthesized through precipitation method from SnCl2·2H2O and RuCl2·2H2O solutions. The obtained nano-sized pristine products were characterized using X-ray diffractometry, Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC)-thermogravimetric analysis (TGA) and cyclic voltammetry (CV). The Debye–Scherrer formula was used to estimate the average size of the nanoparticles SnO2 (36 nm), RuO2(24 nm), and (Sn-Ru)O2 (19 nm). Electrochemical studies were carried out to examine the capacitance of SnO2, RuO2, (Sn-Ru)O2 electrodes in 0.5 M H2SO4 at various scan rates. The estimated electrode capacitance was de-termined to decrease with an increase of scan rate.
文摘TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.
文摘介绍了Ag基触点材料的发展历史以及Ag Sn O2材料的研究现状,分析了Ag Sn O2材料在当前工业化生产中所面临的问题。针对国内粉体制备工艺的不足以及Ag Sn O2材料加工性能不佳等难题,总结了不同加工工艺对材料性能的影响,提出了以优化加工工艺为出发点,探讨利用有限元分析(FEM)寻求最优工艺参数的可能性,并通过有限元分析法解决Ag Sn O2加工的困难,为改善材料的综合性能提供指导。
文摘采用固相烧结法制备了(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1-x)Sn_x)O_3(BCZTS)无铅压电陶瓷。研究了不同含量SnO_2(x=0,0.02,0.04,0.06,0.08)对BCZT无铅压电陶瓷相结构、压电性能、介电性能和铁电性能的影响,并利用XRD、SEM、准静态d33测试仪等表征样品。结果表明,所有样品均为单一钙钛矿结构。当掺杂x=0.02时,(Ba_(0.85)Ca_(0.15))(Ti_(0.9)Zr_(0.1-x)Sn_x)O_3无铅压电陶瓷材料的综合性能优异:d33=553 p C/N,kp=49%,εr^7474(1 k Hz),tanδ~1.5%(1k Hz),Pr=6.06μC/cm^2,Ec=2 k V/cm,利用Curie-Weiss定律对该实验结果进行拟合,发现x=0.02的样品的介电弛豫特征更为明显。
文摘PhCH2)3Sn·(O2CC5H4N)·(H2O)]n was synthesized by the reaction of 4-pyridine car-boxylic acid with the tribenzyltin o xide and was characterized by IR,1 H NMR and MS.Its crystal structure was determined by X-ray single crystal diffraction.The crystal belongs to monoclinic.The space group P21 /c with unit cell parameters a=1.2241(8)nm,b=0.9660(6)nm,c=2.3708(15)nm,β=102.722(12)°,V=2.734(3)nm3,Z =4,Dc=1.298g·cm-3 .In crystal,the tin atom rendered five-coordinate in a trigo nal bipyramidal structure which is b ridged by 4-pyridine carboxy-late into one-dimensional chain polymers.
文摘The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of thin films were inspected at different sintering temperatures by constructing a humidity-impedance measuring system. It was found that the addition of rare earth ion La^3+ and alkali ion K^+ was beneficial for improving the humidity sensitive properties of the samples and La0.003K0.5Ti0.9Sn0.1O2 sintered at 500 ℃ for 4 h showed the best humidity sensing properties. The impedance of this thin film decreased from 109 to 104 Ω with excellent linearity in the humidity range of 11%-95%. Narrow hysteresis loop, prominent stability and high sensitivity were obtained. The effects of dopant con-tent and doping mechanism on humidity sensitivity were also discussed in terms of segregation of rare earth ions at grain boundaries and granularity of crystalline and influence of K^+ on the decrease in the intrinsic resistance of the materials, and increase in the number of wa-ter adsorption sites.
基金supported by Natural Science Foundation of Jiangsu Province of China (No.BK20170982)the National Natural Science Foundation of China(No.51601080)
文摘Herein,AgLi1/3Sn2/3O2 with delafossite structure was prepared by treating the layered compound Li2 SnO3 with molten AgN03 via ion exchange of Li^+for Ag^+.The structure characterization and the electrochemical performance of AgLi1/3Sn2/3O2 was thoroughly investigated.AgLi1/3Sn2/3O2 is found to possess stacking lamellar morphology,which means small electrochemical impedance and so facilitates charge transfer kinetics during the cycling.Compared with Li2 Sn03,due to the introducing of excellent electrical conductivity of silver,AgLi1/3Sn2/3O2 exhibits improved electrochemical performance in terms of capacity,cycling stability and coulombic efficiency.The results show AgLi1/3Sn2/3O2 presents favorable specific capacity of 339 mAh/g at current density of 200 mA/g after 50 cycles and initial coulombic efficiency of 96%.Exsitu XRD analysis revealed the reaction mechanism of AgLi1/3Sn2/3O2 as an anode for lithium ion batteries.