Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This p...Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.展开更多
Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relati...Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests.展开更多
The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as b...The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.展开更多
Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are re...Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.展开更多
The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then ...The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh-Bénard configuration.展开更多
基金National Nature Science Foundation of China, No.41071324 No.40730526+2 种基金 Key Subject Developing Project by Shanghai Municipal Education Commission, No.J50402 Science and Technology Commission of Shanghai Municipality, No.08240514000 Leading Academic Discipline Project of Shanghai Normal University, No.DZL809
文摘Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.
基金supported by the National Natural Science Foundation of China (Nos. 91748201 and 51505014)
文摘Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests.
文摘The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.
基金supported by the National Natural Science Foundation of China(Grant Nos.41505084,41275053and 41461164006)the China Meteorological Administration Special Public Welfare Research Fund(Grant Nos.GYHY201406003 and GYHY201406009)+1 种基金the Guangdong Meteorological Service Project(Grant No.2015B01)the Guangdong Province Public Welfare Research and Capacity Construction Project(Grant No.2017B020218003)
文摘Unresolved small-scale orographic(SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model(GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization(SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer(PBL)parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.
基金supported by the Research Grants Council of Hong Kongin particular through the General Research Funds (CUHK403811 and CUHK403712)through the NSFC/RGC Joint Research Scheme (N CUHK462/11)
文摘The system of turbulent thermal convection is introduced. Progresses in recent decades in the four major areas of research in turbulent convection are briefly reviewed. Some of the recent trends of the field are then discussed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the non-standard or non-classical Rayleigh-Bénard configuration.